我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.

例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法)

請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:

(1)如圖,在⊙O所在的平面上,放置一條直線m(m和⊙O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些(直接寫出兩個(gè)即可)

(2)如圖,在⊙O所在的平面上,請(qǐng)你放置與⊙O都相交且不同時(shí)經(jīng)過圓心的兩條直線mn(m與⊙O分別交于點(diǎn)AB,n與⊙O分別交于點(diǎn)CD).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明.

(3)如圖,AB是⊙O的直徑,AC是弦,D的中點(diǎn),弦DEAB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

答案:
解析:

  分析:(1)由問題(1)圖提出圓中的有關(guān)概念;(2)從兩條直線的不同位置關(guān)系來(lái)思考;(3)假設(shè)點(diǎn)C和點(diǎn)E重合,利用這個(gè)條件來(lái)探索.

  解:(1)(圖中線段AB)、弧(圖中的、)等.

  (2)情形1:如圖,AB為弦,CD為垂直于弦AB的直徑.

  結(jié)論:垂徑定理.證明:略(見課本的證明過程)

  情形2:如圖,AB為弦,CD為直徑,且mn在圓內(nèi)相交于點(diǎn)P

  結(jié)論:PA·PBPC·PD

  提示:連接AD、BC.通過證明△PAD∽△PCB來(lái)證得結(jié)論(證明略)

  情形3:如圖,AB為弦,CD為直徑,且mn在圓外相交于點(diǎn)P

  結(jié)論:PA·PBPC·PD

  證明:同情形2

  情形4:如圖,AB為弦,CD為弦,且ABCD

  結(jié)論:

  提示:連接AD、BC,通過證明四邊形ABCD為矩形來(lái)證得結(jié)論(證明略)

  (3)如圖,若點(diǎn)C和點(diǎn)E重合,則由圓的對(duì)稱性知,點(diǎn)C和點(diǎn)D關(guān)于直徑AB對(duì)稱.設(shè)∠BACx,則∠BADx,∠ABC90°-x.又D的中點(diǎn),所以2CAD=∠CAD+∠ACD180°-∠ADC.因?yàn)椤?/FONT>ADC=∠ABC,所以2·2x180°-(90°-x).解得x30°.所以當(dāng)∠BAC30°時(shí),點(diǎn)C和點(diǎn)E重合.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點(diǎn),弦DE精英家教網(wǎng)⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第28章《圓》中考題集(22):28.1 圓的認(rèn)識(shí)(解析版) 題型:解答題

我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》中考題集(23):3.3 圓周角(解析版) 題型:解答題

我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第5章《中心對(duì)稱圖形(二)》中考題集(21):5.3 圓周角(解析版) 題型:解答題

我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2008•佛山)我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案