精英家教網(wǎng)如下圖,在矩形ABCD中,AB=12cm,BC=6cm.點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1 cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6)那么:
(1)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?
(2)求四邊形QAPC的面積,提出一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論;
(3)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?
分析:(1)根據(jù)題意分析可得:因?yàn)閷?duì)于任何時(shí)刻t,AP=2t,DQ=t,QA=6-t.當(dāng)QA=AP時(shí),△QAP為等腰直角三角形,可得方程式,解可得答案;
(2)根據(jù)(1)中.在△QAC中,QA=6-t,QA邊上的高DC=12,由三角形的面積公式可得關(guān)系式,計(jì)算可得在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形QAPC的面積始終保持不變;
(3)根據(jù)題意,在矩形ABCD中,可分為
QA
AB
=
AP
BC
、
QA
BC
=
AP
AB
兩種情況來研究,列出關(guān)系式,代入數(shù)據(jù)可得答案.
解答:精英家教網(wǎng)解:(1)對(duì)于任何時(shí)刻t,AP=2t,DQ=t,QA=6-t.
當(dāng)QA=AP時(shí),△QAP為等腰直角三角形,即:6-t=2t,
解得:t=2(s),
所以,當(dāng)t=2s時(shí),△QAP為等腰直角三角形.

(2)在△QAC中,QA=6-t,QA邊上的高DC=12,
∴S△QAC=
1
2
QA•DC=
1
2
(6-t)•12=36-6t.
在△APC中,AP=2t,BC=6,
∴S△APC=
1
2
AP•BC=
1
2
•2t•6=6t.
∴S四邊形QAPC=S△QAC+S△APC=(36-6t)+6t=36(cm2).
由計(jì)算結(jié)果發(fā)現(xiàn):
在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形QAPC的面積始終保持不變.(也可提出:P、Q兩點(diǎn)到對(duì)角線AC的距離之和保持不變).

(3)根據(jù)題意,可分為兩種情況來研究,在矩形ABCD中:
①當(dāng)
QA
AB
=
AP
BC
時(shí),△QAP∽△ABC,那么有:
6-t
12
=
2t
6
,解得t=
6
5
=1.2(s),
即當(dāng)t=1.2s時(shí),△QAP∽△ABC;

②當(dāng)
QA
BC
=
AP
AB
時(shí),△PAQ∽△ABC,那么有:
6-t
6
=
2t
12
,解得t=3(s),
即當(dāng)t=3s時(shí),△PAQ∽△ABC;
所以,當(dāng)t=1.2s或3s時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似.
點(diǎn)評(píng):此題比較復(fù)雜,綜合了等腰三角形、相似三角形的判定定理與性質(zhì),是一道具有一定綜合性的好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川省資陽市安岳縣自治鄉(xiāng)九義校九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如下圖,在矩形ABCD中,AB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2 cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1 cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6)那么:
(1)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?
(2)求四邊形QAPC的面積,提出一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論;
(3)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山東省泰安市新泰市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如下圖,在矩形ABCD中,AB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2 cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1 cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6)那么:
(1)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?
(2)求四邊形QAPC的面積,提出一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論;
(3)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

(2002•河北)如下圖,在矩形ABCD中,AB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2 cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1 cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6)那么:
(1)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?
(2)求四邊形QAPC的面積,提出一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論;
(3)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2002•河北)如下圖,在矩形ABCD中,AB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2 cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1 cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6)那么:
(1)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?
(2)求四邊形QAPC的面積,提出一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論;
(3)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案