閱讀下列材料:
題目:已知實(shí)數(shù)a,x滿足a>2且x>2,試判斷的大小關(guān)系,并加以說(shuō)明.
思路:可用“求差法”比較兩個(gè)數(shù)的大小,先列出的差,再
說(shuō)明y的符號(hào)即可.
現(xiàn)給出如下利用函數(shù)解決問(wèn)題的方法:
簡(jiǎn)解:可將y的代數(shù)式整理成,要判斷y的符號(hào)可借助函數(shù)的圖象和性質(zhì)解決.
參考以上解題思路解決以下問(wèn)題:
已知a,bc都是非負(fù)數(shù),a<5,且,
【小題1】(1)分別用含a的代數(shù)式表示4b,4c;
【小題2】(2)說(shuō)明a,b,c之間的大小關(guān)系.

【小題1】解:(1)∵ ,
           ∴
消去b并整理,得.……………1分
消去c并整理,得.………2分
【小題2】(2)∵ ,
將4b看成a的函數(shù),由函數(shù)的性質(zhì)結(jié)合它的圖象(如圖7所示),以及a,b均為非負(fù)數(shù)得a≥3.
           ∵ a<5,
∴ 3≤a<5.……………………………………………………………………3分
,
看成a的函數(shù),由函數(shù)的性質(zhì)結(jié)合它的圖象
(如圖8所示)可知,當(dāng)3≤a<5時(shí),
ba.……………………………………………4分
a≥3,
≥0.
ca
bac. ………………………………………5分
閱卷說(shuō)明:“ba,bcac”三者中,先得出其中任何一個(gè)結(jié)論即可
得到第4分,全寫對(duì)得到5分. 解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:
題目:已知實(shí)數(shù)a,x滿足a>2且x>2,試判斷ax與a+x的大小關(guān)系,并加以說(shuō)明.
思路:可用“求差法”比較兩個(gè)數(shù)的大小,先列出ax與a+x的差y=ax-(a+x),再說(shuō)明y的符號(hào)即可.
現(xiàn)給出如下利用函數(shù)解決問(wèn)題的方法:
簡(jiǎn)解:可將y的代數(shù)式整理成y=(a-1)x-a,要判斷y的符號(hào)可借助函數(shù)y=(a-1)x-a的圖象和性質(zhì)解決.
參考以上解題思路解決以下問(wèn)題:
已知a,b,c都是非負(fù)數(shù),a<5,且 a2-a-2b-2c=0,a+2b-2c+3=0.
(1)分別用含a的代數(shù)式表示4b,4c;
(2)說(shuō)明a,b,c之間的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:

題目:已知實(shí)數(shù)a,x滿足a>2且x>2,試判斷的大小關(guān)系,并加以說(shuō)明.

思路:可用“求差法”比較兩個(gè)數(shù)的大小,先列出的差,再

說(shuō)明y的符號(hào)即可.

現(xiàn)給出如下利用函數(shù)解決問(wèn)題的方法:

簡(jiǎn)解:可將y的代數(shù)式整理成,要判斷y的符號(hào)可借助函數(shù)的圖象和性質(zhì)解決.

參考以上解題思路解決以下問(wèn)題:

已知ab,c都是非負(fù)數(shù),a<5,且 ,

1.(1)分別用含a的代數(shù)式表示4b,4c;

2.(2)說(shuō)明a,b,c之間的大小關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市西城區(qū)九年級(jí)第一學(xué)期期末測(cè)試數(shù)學(xué)卷 題型:解答題

閱讀下列材料:
題目:已知實(shí)數(shù)a,x滿足a>2且x>2,試判斷的大小關(guān)系,并加以說(shuō)明.
思路:可用“求差法”比較兩個(gè)數(shù)的大小,先列出的差,再
說(shuō)明y的符號(hào)即可.[來(lái)源:Z。xx。k.Com]
現(xiàn)給出如下利用函數(shù)解決問(wèn)題的方法:
簡(jiǎn)解:可將y的代數(shù)式整理成,要判斷y的符號(hào)可借助函數(shù)的圖象和性質(zhì)解決.
參考以上解題思路解決以下問(wèn)題:
已知a,bc都是非負(fù)數(shù),a<5,且
【小題1】(1)分別用含a的代數(shù)式表示4b,4c;
【小題2】(2)說(shuō)明a,bc之間的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆北京市西城區(qū)九年級(jí)第一學(xué)期期末測(cè)試數(shù)學(xué)卷 題型:解答題

閱讀下列材料:

題目:已知實(shí)數(shù)a,x滿足a>2且x>2,試判斷的大小關(guān)系,并加以說(shuō)明.

思路:可用“求差法”比較兩個(gè)數(shù)的大小,先列出的差,再

說(shuō)明y的符號(hào)即可.[來(lái)源:Z。xx。k.Com]

現(xiàn)給出如下利用函數(shù)解決問(wèn)題的方法:

簡(jiǎn)解:可將y的代數(shù)式整理成,要判斷y的符號(hào)可借助函數(shù)的圖象和性質(zhì)解決.

參考以上解題思路解決以下問(wèn)題:

已知a,b,c都是非負(fù)數(shù),a<5,且

1.(1)分別用含a的代數(shù)式表示4b,4c;

2.(2)說(shuō)明a,b,c之間的大小關(guān)系.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案