【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點(diǎn)A(0,2),點(diǎn)C(,0),如圖所示:拋物線經(jīng)過(guò)點(diǎn)B

(1)求點(diǎn)B的坐標(biāo);

(2)求拋物線的解析式;

(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

【答案】(1)(-3,1);(2)y=x2+x-2;(3)P1(1,-1)、P2(2,1).

【解析】

試題分析:(1)根據(jù)題意,過(guò)點(diǎn)B作BDx軸,垂足為D;根據(jù)角的互余的關(guān)系,易得B到x、y軸的距離,即B的坐標(biāo);

(2)根據(jù)拋物線過(guò)B點(diǎn)的坐標(biāo),可得a的值,進(jìn)而可得其解析式;

(3)首先假設(shè)存在,分A、C是直角頂點(diǎn)兩種情況討論,根據(jù)全等三角形的性質(zhì),可得答案.

試題解析:(1)過(guò)點(diǎn)B作BDx軸,垂足為D,

∵∠BCD+ACO=90°,ACO+CAO=90°,

∴∠BCD=CAO,

∵∠BDC=COA=90°,CB=AC,

∴△BCD≌△CAO,

BD=OC=1,CD=OA=2,

點(diǎn)B的坐標(biāo)為(-3,1);

(2)拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)B(-3,1),則得到1=9a-3a-2,

解得a=,

所以拋物線的解析式為y=x2+x-2;

(3)假設(shè)存在點(diǎn)P,使得ACP仍然是以AC為直角邊的等腰直角三角形:

若以點(diǎn)C為直角頂點(diǎn);則延長(zhǎng)BC至點(diǎn)P1,使得P1C=BC,得到等腰直角三角形ACP1,

過(guò)點(diǎn)P1作P1Mx軸,

CP1=BC,MCP1=BCD,P1MC=BDC=90°,

∴△MP1C≌△DBC.

CM=CD=2,P1M=BD=1,可求得點(diǎn)P1(1,-1);

若以點(diǎn)A為直角頂點(diǎn);

則過(guò)點(diǎn)A作AP2CA,且使得AP2=AC,得到等腰直角三角形ACP2,

過(guò)點(diǎn)P2作P2Ny軸,同理可證AP2N≌△CAO,

NP2=OA=2,AN=OC=1,可求得點(diǎn)P2(2,1),

經(jīng)檢驗(yàn),點(diǎn)P1(1,-1)與點(diǎn)P2(2,1)都在拋物線y=x2+x-2上.

考點(diǎn): 二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD邊上的動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿ABCD路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.

問(wèn)題引入:

(1)如圖,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時(shí),SABD:SABC=   ;當(dāng)點(diǎn)D是BC邊上任意一點(diǎn)時(shí),SABD:SABC=   (用圖中已有線段表示).

探索研究:

(2)如圖,在ABC中,O點(diǎn)是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO、CO,試猜想SBOC與SABC之比應(yīng)該等于圖中哪兩條線段之比,并說(shuō)明理由.

拓展應(yīng)用:

(3)如圖,O是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO并延長(zhǎng)交AC于點(diǎn)F,連結(jié)CO并延長(zhǎng)交AB于點(diǎn)E,試猜想的值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由;

(3)OPD為等腰三角形時(shí),寫(xiě)出點(diǎn)P的坐標(biāo)(不必寫(xiě)過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貿(mào)易公司購(gòu)進(jìn)長(zhǎng)青膠州大白菜,進(jìn)價(jià)為每棵20元,物價(jià)部門規(guī)定其銷售單價(jià)每棵不得超過(guò)80元,也不得低于30元.經(jīng)調(diào)查發(fā)現(xiàn):日均銷售量y(棵)與銷售單價(jià)x(元/棵)滿足一次函數(shù)關(guān)系,并且每棵售價(jià)60元時(shí),日均銷售90棵;每棵售價(jià)30元時(shí),日均銷售120棵.

(1)求日均銷售量y與銷售單價(jià)x的函數(shù)關(guān)系式;

(2)在銷售過(guò)程中,每天還要支出其他費(fèi)用200元,求銷售利潤(rùn)w(元)與銷售單價(jià)x之間的函數(shù)關(guān)系式;并求當(dāng)銷售單價(jià)為何值時(shí),可獲得最大的銷售利潤(rùn)?最大銷售利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校團(tuán)委為積極參與陶行知杯.全國(guó)書(shū)法大賽現(xiàn)場(chǎng)決賽,向?qū)W校學(xué)生征集書(shū)畫(huà)作品,今年3月份舉行了書(shū)畫(huà)比賽初賽,初賽成績(jī)?cè)u(píng)定為A,B,CD,E五個(gè)等級(jí).該校七年級(jí)書(shū)法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題

(1)該校七年級(jí)書(shū)法班共有 名學(xué)生;扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)扇形的圓心角等于 并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)A等級(jí)的4名學(xué)生中有2名男生,2名女生現(xiàn)從中任意選取2名學(xué)生參加陶行知杯.全國(guó)書(shū)法大賽現(xiàn)場(chǎng)決賽,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法求出恰好選到1名男生和1名女生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B、∠D的兩邊分別平行。

(1)在圖①中,∠B與∠D的數(shù)量關(guān)系為相等相等。

(2)在圖②中,∠B與∠D的數(shù)量關(guān)系為互補(bǔ)互補(bǔ)。

(3)用一句話歸納的結(jié)論為如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或互補(bǔ)如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或互補(bǔ)。

試分別說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AC=BC,∠ACB=90°,AE平分∠BACBCE,BDAED,DMACAC延長(zhǎng)線于M,連接CD,下列四個(gè)結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB-BC=2MC,其中正確的有( )個(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)EAD邊的中點(diǎn),點(diǎn)MAB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;當(dāng)AM的值為 時(shí),四邊形AMDN是菱形。

查看答案和解析>>

同步練習(xí)冊(cè)答案