如圖,以平行四邊形ABCD的頂點A為圓心,AB為半徑作圓交AD,BC于點E,F(xiàn),延長BA交⊙O于G。

求證:

 

【答案】

證明見解析.

【解析】

試題分析:首先在圓中連接AF,即可以將問題轉化到三角形,四邊形中根據(jù)平行線的性質可得到相應的一組角相等,然后再結合在同圓中根據(jù)圓心角相等,根據(jù)圓周角定理可知圓心角相等所對的弧相等求得結論.

試題解析:證明:連接AF,

∵AB=AF,

∴∠ABF=∠AFB.

∵四邊形ABCD是平行四邊形,

∴AD∥BC.

∴∠DAF=∠AFB,∠GAE=∠ABF.

∴∠GAE=∠EAF.

.

考點:1. 圓心角、弧、弦的關系2. 平行四邊形的判定.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,以平行四邊形ABCD的一邊AB為直徑的⊙O交BC、BD于Q、P點,AQ交BD于E點,若精英家教網(wǎng)BP=PD.
(1)求證:平行四邊形ABCD為菱形;
(2)若AE=4,EQ=2,求梯形AQCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,以平行四邊形ABCD的對稱中心為坐標原點,建立平面直角坐標系,A點坐標為(-4,3),且AD與x軸平行,AD=6,求其他各點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以平行四邊形ABCD的一邊AB為直徑作⊙O,若⊙O過點C,且∠AOC=80°,則∠BAD等于( 。
A、160°B、145°C、140°D、135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以平行四邊形ABCD的邊AB、BC、CD、DA為斜邊,分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連結這四個點,得四邊形EFGH,當∠ADC=α(0°<α<90°)時,有以下結論:①∠GCF=180°-a;②∠HAE=90°+a;③HE=HG;④四邊形EFGH是正方形;⑤四邊形EFGH是菱形.則結論正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以平行四邊形ABCD(邊長均大于2)的四個頂點為圓心,1為半徑作弧,則圖中陰影部分的面積和是
π
π
.(結果中可保留π)

查看答案和解析>>

同步練習冊答案