【題目】如圖,正方形ABCD中,點EF分別在邊BCDC上,連接AE、BFAEBF,點MN分別在邊AB、DC上,連接MN,若MNBC,FN1BE2,則BM_____

【答案】13

【解析】

根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,ABBC的關(guān)系,根據(jù)兩直線垂直,可得∠AOB的度數(shù),根據(jù)同角的余角相等可得∠BAO=CBF,根據(jù)ASA,可得ABE≌△BCF,得BE=CF=2,分情況討論,證明四邊形MBCN是平行四邊形,則BM=CN,根據(jù)兩圖形可得BM的長.

解:∵四邊形ABCD是正方形,

∴∠ABC=∠C90°,ABBC

AEBF,

∴∠AOB=∠BAO+ABO90°,

∵∠ABO+CBF90°,

∴∠BAO=∠CBF

ABEBCF中,

,

∴△ABE≌△BCFASA),

BECF2,

MNBC,ABCD

∴四邊形MBCN是平行四邊形,

BMCN,

①當NF的上方時,如圖1,

BMCNCF+FN2+13,

②當NF的下方時,如圖2,

BMCNCFFN211

BM的長為13,

故答案為:13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以BC為直徑的⊙OAC于點E,過點EAB的垂線交AB于點F,交CB的延長線于點G,且∠ABG=2C.

(1)求證:EG是⊙O的切線;

(2)若tanC=,AC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x單位:小時進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

1補全頻數(shù)分布直方圖

2求扇形統(tǒng)計圖中m的值和E組對應(yīng)的圓心角度數(shù)

3請估計該校3000名學(xué)生中每周的課外閱讀時間不小于6小時的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如果兩個正數(shù)a,b,即a0,b0,有下面的不等式:,當且僅當ab時取到等號我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具.

初步探究:(1)已知x0,求函數(shù)yx+的最小值.

問題遷移:(2)學(xué)校準備以圍墻一面為斜邊,用柵欄圍成一個面積為100m2的直角三角形,作為英語角,直角三角形的兩直角邊各為多少時,所用柵欄最短?

創(chuàng)新應(yīng)用:(3)如圖,在直角坐標系中,直線AB經(jīng)點P3,4),與坐標軸正半軸相交于A,B兩點,當△AOB的面積最小時,求△AOB的內(nèi)切圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達終點時,甲離終點還有300米

其中正確的結(jié)論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在中,邊上的動點運動(與,不重合),點與點同時出發(fā),由點沿的延長線方向運動(不與重合),連結(jié)于點,點是線段上一點.

1)初步嘗試:如圖,若是等邊三角形,,且點的運動速度相等,求證:.

小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:

思路一:過點,交于點,先證,再證,從而證得結(jié)論成立;

思路二:過點,交的延長線于點,先證,再證,從而證得結(jié)論成立.

請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分)

2)類比探究:如圖,若在中,,,且點,的運動速度之比是,求的值;

3)延伸拓展:如圖,若在中,,,記,且點的運動速度相等,試用含的代數(shù)式表示(直接寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個紅色不透明的盒子中放有四張分別寫有數(shù)字1,2,3,4的紅色卡片,在一個藍色不透明的盒子中放有三張分別寫有數(shù)字1,2,3的藍色卡片,卡片除顏色和數(shù)字外完全相同.

1)從紅盒中任意抽取一張紅色卡片,從藍盒中任意抽取一張藍色卡片,用列舉法(樹形圖或列表法)表示所有的可能情況;

2)求兩張卡片上寫有相同數(shù)字的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象相交于點.

1)求反比例函數(shù)的解析式;

2)將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點,與軸交于點,且的面積為,求直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案