以△ABC的AB、AC為邊分別作正方形ADEB、ACGF,連接DC、BF:

(1)CD與BF相等嗎?請說明理由。

(2)CD與BF互相垂直嗎?請說明理由。

(3)利用旋轉(zhuǎn)的觀點,在此題中,△ADC可看成由哪個三角形繞哪點旋轉(zhuǎn)多少角度得到的。

 (1)CD=BF。可以通過證明△ADC≌△ABF得到。

(2)CD⊥BF。提示:由△ADC≌△ABF得到∠ADC=∠ABF,AB和CD相交的

對頂角相等。

(3)△ADC可看成由△ABF繞點A旋轉(zhuǎn)90°角得到的。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,△ABE和△ACF分別是以△ABC的AB、AC為邊的正三角形,CE、BF相交于O.則∠EOB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABE和△ACF分別是以△ABC的AB、AC為邊的正三角形,CE、BF相交于O.
(1)求證:∠AEC=∠ABF;(2)求∠EOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖①,點M為銳角三角形ABC內(nèi)任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN.
(1)求證:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,則稱點M為△ABC的費(fèi)爾馬點.若點M為△ABC的費(fèi)爾馬點,試求此時∠AMB、∠BMC、∠CMA的度數(shù);
(3)小翔受以上啟發(fā),得到一個作銳角三角形費(fèi)爾馬點的簡便方法:如圖②,分別以△ABC的AB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設(shè)交點為M,則點M即為△ABC的費(fèi)爾馬點.試說明這種作法的依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、以△ABC的AB、AC為邊分別作正方形ADEB、ACGF,連接DC、BF:
(1)CD與BF相等嗎?請說明理由.
(2)CD與BF互相垂直嗎?請說明理由.
(3)利用旋轉(zhuǎn)的觀點,在此題中,△ADC可看成由哪個三角形繞哪點旋轉(zhuǎn)多少角度得到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在以△ABC的AB、AC為邊向外作正方形ABDE及ACGF,作AN⊥BC于點N,延長NA交EF于M點,求證:EM=MF.

查看答案和解析>>

同步練習(xí)冊答案