【題目】如圖,在平面直角坐標(biāo)系中,將斜邊長為2個等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點(diǎn)P從點(diǎn)O出發(fā)沿著折線以每秒 的速度向右運(yùn)動,2016秒時,點(diǎn)P的坐標(biāo)是

【答案】(2016,0)
【解析】解:因?yàn)榈妊苯侨切,點(diǎn)P從點(diǎn)O出發(fā)沿著折線以每秒 的速度向右運(yùn)動,可得:
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,運(yùn)動時間為1秒時,點(diǎn)A的坐標(biāo)為(1,1),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,運(yùn)動時間為2秒時,點(diǎn)的坐標(biāo)為(2,0),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,運(yùn)動時間為3秒時,點(diǎn)B的坐標(biāo)為(3,﹣1),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,運(yùn)動時間為4秒時,點(diǎn)的坐標(biāo)為(4,0),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,運(yùn)動時間為5秒時,點(diǎn)C的坐標(biāo)為(5,1),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,運(yùn)動時間為6秒時,點(diǎn)的坐標(biāo)為(6,0),
…,
∵2016÷4=504,
∴A2016的坐標(biāo)是(2016,0),
所以答案是:(2016,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游風(fēng)景區(qū)出售一種紀(jì)念品,該紀(jì)念品的成本為12元/個,這種紀(jì)念品的銷售價格為x(元/個)與每天的銷售數(shù)量y(個)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)銷售價格定為多少時,每天可以獲得最大利潤?并求出最大利潤.
(3)“十一”期間,游客數(shù)量大幅增加,若按八折促銷該紀(jì)念品,預(yù)計每天的銷售數(shù)量可增加200%,為獲得最大利潤,“十一”假期該紀(jì)念品打八折后售價為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y1=2x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,反比例函數(shù)y2= 與直線l交于點(diǎn)C,且AB=2AC.
(1)求反比例函數(shù)的解析式;
(2)根據(jù)函數(shù)圖象,直接寫出0<y1<y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,8),點(diǎn)P在邊BC上以每秒1個單位長的速度由點(diǎn)C向點(diǎn)B運(yùn)動,同時點(diǎn)Q在邊AB上以每秒a個單位長的速度由點(diǎn)A向點(diǎn)B運(yùn)動,運(yùn)動時間為t秒(t>0).

(1)若反比例函數(shù)y= 圖象經(jīng)過P點(diǎn)、Q點(diǎn),求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點(diǎn)運(yùn)動到AB中點(diǎn)時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,動點(diǎn)P、Q同時從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動,設(shè)運(yùn)動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=60°,點(diǎn)E為直線AC上一點(diǎn),D為直線BC上的一點(diǎn),且DA=DE. 當(dāng)點(diǎn)D在線段BC上時,如圖①,易證:BD+AB=AE;
當(dāng)點(diǎn)D在線段CB的延長線上時,如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題我們稱之為“飲馬問題”.如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的C點(diǎn)飲馬后再到B點(diǎn)宿營.請問怎樣走才能使總的路程最短?某課題組在探究這一問題時抽象出數(shù)學(xué)模型:

直線l同旁有兩個定點(diǎn)A、B,在直線l上存在點(diǎn)P,使得PA+PB的值最。

解法:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連接A′B,則A′B與直線l的交點(diǎn)即為P,且PA+PB的最小值為線段A′B的長.

(1)根據(jù)上面的描述,在備用圖中畫出解決“飲馬問題”的圖形;

(2)利用軸對稱作圖解決“飲馬問題”的依據(jù)是   

(3)應(yīng)用:如圖2,已知AOB=30°,其內(nèi)部有一點(diǎn)P,OP=12,在AOB的兩邊分別有C、D兩點(diǎn)(不同于點(diǎn)O),使PCD的周長最小,請畫出草圖,并求出PCD周長的最小值;

如圖3,點(diǎn)A(4,2),點(diǎn)B(1,6)在第一象限,在x軸、y軸上是否存在點(diǎn)D、點(diǎn)C,使得四邊形ABCD的周長最?若存在,請畫出草圖,并求其最小周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),E是正方形ABCD的邊BC上的一個點(diǎn)(E與B、C兩點(diǎn)不重合),過點(diǎn)E作射線EP⊥AE,在射線EP上截取線段EF,使得EF=AE;過點(diǎn)F作FG⊥BC交BC的延長線于點(diǎn)G.

(1)求證:FG=BE;
(2)連接CF,如圖(2),求證:CF平分∠DCG;
(3)當(dāng) = 時,求sin∠CFE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案