如圖所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E,F(xiàn)為垂足,AE=ED,求∠EBF的度數(shù).
60°
【解析】
試題分析:依題意,首先推出△ABD是等邊三角形,然后可知∠A=60°,∠EBF+∠D=180°,∠D+∠A=180°,故可得∠EBF=∠A=60°.
如圖,連接BD.
∵BE⊥AD,AE=ED,
∴BD=AB=AD,
∴△ABD是等邊三角形,
∴∠A=60°,
又∵BE⊥AD,BF⊥CD,
∴∠BED+∠BFD=180°,
∴∠D+∠EBF=180°,
又∵∠D+∠A=180°,
∴∠EBF=∠A=60°.
考點:本題考查的是菱形的性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握:(1)中垂線的性質(zhì);(2)菱形的兩個鄰角互補;(3)同角的補角相等;(4)菱形的四邊相等.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com