32、如圖,已知四邊形ABCD和直線L.
(1)作出四邊形ABCD以直線L為對稱軸的對稱圖形A′B′C′D′;
(2)分別延長4條線段,使它們相交,你發(fā)現(xiàn)什么?
(3)你能提出更多的問題嗎?
分析:(1)從四點(diǎn)向L引垂線并延長,分別找到四點(diǎn)的對稱點(diǎn),然后順次連接即可;
(2)分別延長4條線段,使它們相交,交點(diǎn)在對稱軸上;
(3)可根據(jù)軸對稱圖形提問,如與AD相等的線段是哪一條等.此題答案不唯一.
解答:(1);

(2)交點(diǎn)在對稱軸上;

(3)與AD相等的線段是哪一條.
點(diǎn)評:考查的是作簡單平面圖形軸對稱后的圖形,其依據(jù)是軸對稱的性質(zhì).基本作法:①先確定圖形的關(guān)鍵點(diǎn);②利用軸對稱性質(zhì)做出關(guān)鍵點(diǎn)的對稱點(diǎn);③按原圖形中的方式順次連接對稱點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊答案