【題目】某校機(jī)器人興趣小組在如圖①所示的矩形場(chǎng)地上開(kāi)展訓(xùn)練.機(jī)器人從點(diǎn) 出發(fā),在矩形 邊上沿著 的方向勻速移動(dòng),到達(dá)點(diǎn) 時(shí)停止移動(dòng).已知機(jī)器人的速度為 個(gè)單位長(zhǎng)度/ ,移動(dòng)至拐角處調(diào)整方向需要 (即在 、 處拐彎時(shí)分別用時(shí) ).設(shè)機(jī)器人所用時(shí)間為 時(shí),其所在位置用點(diǎn) 表示, 到對(duì)角線(xiàn) 的距離(即垂線(xiàn)段 的長(zhǎng))為 個(gè)單位長(zhǎng)度,其中 與 的函數(shù)圖像如圖②所示.
(1)求 、 的長(zhǎng);
(2)如圖②,點(diǎn) 、 分別在線(xiàn)段 、 上,線(xiàn)段 平行于橫軸, 、 的橫坐標(biāo)分別為 、 .設(shè)機(jī)器人用了 到達(dá)點(diǎn) 處,用了 到達(dá)點(diǎn) 處(見(jiàn)圖①).若 ,求 、 的值.
【答案】
(1)
解:作AT⊥BD,垂足為T(mén),由題意得,AB=8,AT=。
在Rt△ABT中,AB2=BT2+AT2,
∴BT=.
∵tan∠ABD==,
∴AD=6,即BC=6
(2)
解:在圖①中,連接P1P2,過(guò)P1,P2分別作BD的垂線(xiàn),垂足為Q1,Q2,則P1Q1//P2Q2,
∵在圖②中,線(xiàn)段MN平行于橫軸,
∴d1=d2,即P1Q1=P2Q2,
∴P1P2//BD,
∴△CP1P2~△CBD,
∴
即
又∵CP1+CP2=7,
∴CP1=3,CP2=4,
設(shè)M,N的橫坐標(biāo)分別為t1,t2,
由題意得,CP1=15-t1,CP2=t2-16,∴t1=12,t2=20
【解析】(1)點(diǎn)P在A點(diǎn)上時(shí),d有最大值為,故可作AT⊥BD,垂足為T(mén),當(dāng)點(diǎn)P從A運(yùn)動(dòng)到B時(shí),剛好d=0,則AB=8,根據(jù)勾股定理求得BT,則由tan∠ABD==可求出AD;
(2)首先觀察圖②可得點(diǎn)M和點(diǎn)N的縱坐標(biāo)相等,即此時(shí)d1=d2,故可過(guò)P1 , P2分別作BD的垂線(xiàn),垂足為Q1 , Q2 , 則P1Q1//P2Q2,且P1Q1=P2Q2 , 從而得到P1P2//BD,△CP1P2~△CBD,通過(guò)相似邊求出CP1與CP2的數(shù)量關(guān)系,再由CP1+CP2=7,可解得CP1=3,CP2=4,從而求出時(shí)間t1和t2。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將2×2的正方形網(wǎng)格如圖所示的放置在平面直角坐標(biāo)系中,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)都是1,正方形ABCD的頂點(diǎn)都在格點(diǎn)上,若直線(xiàn)y=kx(k≠0)與正方形ABCD有公共點(diǎn),則k不可能是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點(diǎn)P,則下列結(jié)論:①圖中全等的三角形只有兩對(duì);②△ABC的面積等于四邊形CDOE面積的2倍;③OD=OE;④CE+CD=BC,其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB=AC,點(diǎn)D,E在邊BC上,且BD=CE.
(1)求證: △ABD≌△ACE;
(2)若∠B=40°,AB=BE,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某長(zhǎng)途汽車(chē)客運(yùn)公司規(guī)定旅客可免費(fèi)攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過(guò)規(guī)定時(shí),需付的行李費(fèi) (元)是行李質(zhì)量 ( )的一次函數(shù).已知行李質(zhì)量為 時(shí)需付行李費(fèi) 元,行李質(zhì)量為 時(shí)需付行李費(fèi) 元.
(1)當(dāng)行李的質(zhì)量 超過(guò)規(guī)定時(shí),求 與 之間的函數(shù)表達(dá)式;
(2)求旅客最多可免費(fèi)攜帶行李的質(zhì)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,其正確命題的個(gè)數(shù)是( ) ①若a>b,則 > ;②垂直于弦的直徑平分弦;③平行四邊形的對(duì)角線(xiàn)互相平分;④反比例函數(shù)y= ,當(dāng)k<0時(shí),y隨x的增大而增大.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列說(shuō)法正確的是( )
A.abc<0,b2﹣4ac>0
B.abc>0,b2﹣4ac>0
C.abc<0,b2﹣4ac<0
D.abc>0,b2﹣4ac<0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com