如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,將直角梯形ABCD放置在平面直角坐標系中.已知A(-2,0)、B(4,0)、D(0,3),反比例函數(shù)y=數(shù)學公式(x>0)的圖象經(jīng)過點C.
(1)求反比例函數(shù)的解析式.
(2)將直角梯形ABCD繞點B沿順時針方向旋轉(zhuǎn)90°,點A、C、D的對應點分別為點A′、C′、D′,C′D′與反比例函數(shù)的圖象交于點E.
①求點D在旋轉(zhuǎn)過程中經(jīng)過的路徑長;
②連接CE、OC、OE,求△OCE的面積.

解:(1)∵D點縱坐標為3,
∴C點縱坐標3,
∵B點橫坐標為4,
∴C點橫坐標4,
∴C點坐標為(4,3).
將(4,3)代入反比例函數(shù)y=得,k=4×3=12,
故y=
(2)①連接BD,BD′.
∵OB=4,OD=3,
∴BD==5,
==π.
②∵OC′=4+3=7,
∴E點橫坐標為7,
當x=7時,y=,
∴E點坐標為(7,).
S四邊形OCEC′=S△OBC+S四邊形BCEC′=×4×3+×(+3)=6+=;
S△OBC=×7×=6,
∴S△OCE=S四邊形OCEC′-S△OBC=-6=
分析:(1)根據(jù)點B和點D的坐標求出點C的坐標,將點C的坐標代入y=,求出k的值即可;
(2)①連接BD,BD′,利用扇形弧長公式求出的長即可;
②求出S四邊形OCEC′和S△OBC,利用S四邊形OCEC′-S△OBC求出S△OCE的值.
點評:本題考查了反比例函數(shù)解析式,涉及扇形的弧長、旋轉(zhuǎn)、勾股定理和三角形及梯形的面積,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案