如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點(diǎn),沿過點(diǎn)B的直線折疊,使點(diǎn)C落在EF上,落點(diǎn)為N,折痕交CD邊于點(diǎn)M,BM與EF交于點(diǎn)P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:根據(jù)題給條件,證不出①CM=DM;△BMN是由△BMC翻折得到的,故BN=BC,又點(diǎn)F為BC的中點(diǎn),可知:sin∠BNF==,求出∠BNF=30°,繼而可求出②∠ABN=30°;在Rt△BCM中,∠CBM=30°,繼而可知BC=CM,可以證出③AB2=3CM2;求出∠NPM=∠NMP=60°,繼而可證出④△PMN是等邊三角形.
解答:解:∵△BMN是由△BMC翻折得到的,
∴BN=BC,又點(diǎn)F為BC的中點(diǎn),
在Rt△BNF中,sin∠BNF==,
∴∠BNF=30°,∠FBN=60°,
∴∠ABN=90°-∠FBN=30°,故②正確;
在Rt△BCM中,∠CBM=∠FBN=30°,
∴tan∠CBM=tan30°==,
∴BC=CM,AB2=3CM2故③正確;
∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,
∴△PMN是等邊三角形,故④正確;
由題給條件,證不出CM=DM,故①錯(cuò)誤.
故正確的有②③④,共3個(gè).
故選C.
點(diǎn)評:本題考查翻折變換的知識,有一定難度,注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方形紙片ABCD中,對角線AC,BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB,AC于點(diǎn)E,G.連接GF.下列結(jié)論:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方形紙片ABCD中,對角線AC,BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB,AC于點(diǎn)G,E,連接GF.
(1)求∠AGD的度數(shù);
(2)證明四邊形AEFG是菱形;
(3)證明BE=2OG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點(diǎn),沿過點(diǎn)B的直線折疊,使點(diǎn)C落在EF上,落點(diǎn)為N,折痕交CD邊于點(diǎn)M,BM與EF交于點(diǎn)P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶模擬)如圖,在正方形紙片ABCD中,E為BC的中點(diǎn).將紙片折疊,使點(diǎn)A與點(diǎn)E重合,點(diǎn)D落在點(diǎn)D′處,MN為折痕.若梯形ADMN的面積為S1,梯形BCMN的面積為S2,則
S1
S2
的值為
3
5
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形紙片ABCD中,對角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,折痕DE分別交AB、AC于點(diǎn)E、G,連接GF.下列結(jié)論:
①∠AGD=112.5°;②tan∠AED=2;③△AGD的面積=△OGD的面積;④AE=GF;⑤BE=2OG.
其中正確結(jié)論的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案