精英家教網(wǎng)如圖,在?ABCD中,AC=6,BD=8,P是對(duì)角線BD上的任意一點(diǎn),過點(diǎn)P作EF∥AC,與?ABCD的兩條邊分別交于點(diǎn)E,F(xiàn).設(shè)BP=x,EF=y,則下面能大致反映y與x之間關(guān)系的圖象為( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)
分析:由平行四邊形的性質(zhì)可知BO為△ABC的中線,又EF∥AC,可知BP為△BEF的中線,且可證△BEF∽△BAC,利用相似三角形對(duì)應(yīng)邊上中線的比等于相似比,得出函數(shù)關(guān)系式,判斷函數(shù)圖象.
解答:解:當(dāng)0≤x≤4時(shí),
∵BO為△ABC的中線,EF∥AC,
∴BP為△BEF的中線,△BEF∽△BAC,
BP
BO
=
EF
AC
,即
x
4
=
y
6
,解得y=
3
2
x,
同理可得,當(dāng)4<x≤8時(shí),y=
3
2
(8-x).
故選A.
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象.關(guān)鍵是根據(jù)圖形,利用相似三角形的性質(zhì)得出分段函數(shù)關(guān)系式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案