【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,DE垂直平分AB,DE=2cm.求BC的長.

【答案】解:∵DE垂直平分AB于E,
∴AD=BD,
∴∠B=∠DAB,
∵AD為∠CAB的角平分線,∠C=90°,
∴∠B=∠DAB=∠CAD,CD=DE,
∵∠B+∠CAB=90°,
∴∠B=30°,
∴BD=2DE,
∵DE=2cm,
∴CD=2cm,BD=4cm,
∴BC=6cm.
【解析】通過DE垂直平分AB于E,推出AD=BD,可得∠B=∠DAB,然后,由AD為∠CAB的角平分線,∠C=90°,根據(jù)三角形內(nèi)角和定理,可知∠B=∠DAB=∠CAD=30°,同時也可推出,CD=DE,BD=2DE,由DE=2,即可推出BC的長度.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,

(1)CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上,BE的延長線交CA的延長線于M,補(bǔ)全圖形,并探究BE和CD的數(shù)量關(guān)系,并說明理由;
(2)若BC上有一動點(diǎn)P,且∠BPQ= ∠ACB,BQ⊥PQ于Q,PQ交AB于F,試探究BQ和PF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各點(diǎn)中,在第四象限的點(diǎn)是(
A.(2,4)
B.(2,﹣4)
C.(﹣2,4)
D.(﹣2,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在線段BC上由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動.

(1)如果點(diǎn)P、Q的速度均為3厘米/秒,經(jīng)過1秒后,△BPD與△CQP是否全等?請說明理由;
(2)若點(diǎn)P的運(yùn)動速度為2厘米/秒,點(diǎn)Q的運(yùn)動速度為2.5厘米/秒,是否存在某一個時刻,使得△BPD與△CQP全等?如果存在請求出這一時刻并證明;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:在四邊形ABCD(圖2)中,取對角線BD的中點(diǎn)O,連接OA、OC.得折線AOC,再過點(diǎn)O作OE∥AC交CD于E,則直線AE即為四邊形ABCD的一條“好線”.

(1)如圖(1),試說明中線AD平分△ABC的面積;
(2)如圖(2),請你探究四邊形ABCO的面積和四邊形ABCD面積的關(guān)系,并說明理由;
(3)解:在圖(2)中,請你說明直線AE是四邊形ABCD的一條“好線”;
(4)如圖(3),若AE為一條“好線”,F(xiàn)為AD邊上的一點(diǎn),請作出四邊形ABCD經(jīng)過F點(diǎn)的“好線”,并對你的畫圖作適當(dāng)說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個正數(shù)的兩個平方根是x﹣7和3x﹣1,則x的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BE=CF,AB∥CD,AB=CD.求證:AF∥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=2是方程x2+x﹣a=0的一個根,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地區(qū)3500名初中畢業(yè)生的數(shù)學(xué)成績,從中抽出20本試卷,每本30份,其中個體是_________

查看答案和解析>>

同步練習(xí)冊答案