如圖,A、B兩點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,每個(gè)方格都是邊長為1的正方形.點(diǎn)C也在格點(diǎn)上,且△ABC為等腰三角形,則符合條件的點(diǎn)C有____個(gè).


  1. A.
    3
  2. B.
    5
  3. C.
    8
  4. D.
    10
C
分析:根據(jù)已知條件,可知按照點(diǎn)C所在的直線分兩種情況:①點(diǎn)C以點(diǎn)A為標(biāo)準(zhǔn),AB為底邊;②點(diǎn)C以點(diǎn)B為標(biāo)準(zhǔn),AB為等腰三角形的一條邊.
解答:解:如圖所示:
①點(diǎn)C以點(diǎn)A為標(biāo)準(zhǔn),AB為底邊,符合點(diǎn)C的有0個(gè);
②點(diǎn)C以點(diǎn)B為標(biāo)準(zhǔn),AB為底邊,符合點(diǎn)C的有0個(gè);
③點(diǎn)C以點(diǎn)B為標(biāo)準(zhǔn),AB為等腰三角形的一條邊,符合點(diǎn)C的有C1、C3、C7,共3個(gè);
④點(diǎn)C以點(diǎn)A為標(biāo)準(zhǔn),AB為等腰三角形的一條邊,符合點(diǎn)C的有C2、C4、C5,C6、C8共5個(gè);
綜上所述,所有符合條件的點(diǎn)C共有8個(gè).
故選C.
點(diǎn)評(píng):此題考查了等腰三角形的判定來解決特殊的實(shí)際問題,其關(guān)鍵是根據(jù)題意,結(jié)合圖形,再利用數(shù)學(xué)知識(shí)來求解.注意數(shù)形結(jié)合的解題思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6.OA、OB的長是精英家教網(wǎng)關(guān)于x的方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求cos∠ABC的值;
(2)若E是x軸正半軸上的一點(diǎn),且S△AOE=
163
,求經(jīng)過D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似,同時(shí)說明理由;
(3)點(diǎn)M在平面直角坐標(biāo)系中,點(diǎn)F在直線AB上,如果以A、C、F、M為頂點(diǎn)的四邊形為菱形,請(qǐng)直接寫出F點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請(qǐng)求出其周長;若發(fā)生變化,請(qǐng)說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,點(diǎn)O1在x軸的正半軸上,⊙O1與x軸交于C、D兩點(diǎn),半徑為4的⊙O與x軸的負(fù)半軸交于G點(diǎn).⊙O與⊙O1的交點(diǎn)A、B在y軸上,設(shè)⊙O1的弦AC的延長線交⊙O于F點(diǎn),連接GF,且AF=2
2
GF
(1)求證:C為線段OG的中點(diǎn);
(2)連接AO1,作⊙O1的弦DE,使DE∥AO1,求E點(diǎn)的坐標(biāo);
(3)如圖2,線段EA、EB(或它們的延長線)分別交⊙O于點(diǎn)M、N.精英家教網(wǎng)問:當(dāng)點(diǎn)E在(不含端點(diǎn)A、B)上運(yùn)動(dòng)時(shí),線段MN的長度是否會(huì)發(fā)生變化?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線C1:y=a(x-1)2+4與直線C2:y=x+b相交于點(diǎn)A(3,精英家教網(wǎng)0)和點(diǎn)B.
(1)求a、b的值;
(2)若P(t,y1),Q(2,y2)是拋物線C1上的兩點(diǎn),且y1<y2,求實(shí)數(shù)t的取值范圍;
(3)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n) 落在圖1中拋物線C1與直線C2圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).

(1)請(qǐng)直接寫出點(diǎn)B、C的坐標(biāo):B
(3,0)
(3,0)
、C
(0,
3
(0,
3
;并求經(jīng)過A、B、C三點(diǎn)的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段AB上(點(diǎn)E是不與A、B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C.此時(shí),EF所在直線與(1)中的拋物線交于點(diǎn)M.
①設(shè)AE=x,當(dāng)x為何值時(shí),△OCE∽△OBC;
②在①的條件下探究:拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形?若存在,請(qǐng)寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案