分析 (1)根據(jù)要求畫出圖象即可.
(2)只要證明△BOE≌△DOF(SAS),即可解決問題.
解答 (1)解:圖象如圖所示.
(2)證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵E,F(xiàn)分別是OA,OC的中點,
∴OE=$\frac{1}{2}$OA,OF=$\frac{1}{2}$OC,
∴OE=OF,
在△BOE和△DOF中,
$\left\{\begin{array}{l}{OB=OD}\\{∠BOE=∠DOF}\\{OE=OF}\end{array}\right.$,
∴△BOE≌△DOF(SAS),
∴BE=DF.
點評 本題考查平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,8) | B. | (-3,-2) | C. | ($\frac{1}{2}$,12) | D. | (1,-6) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com