提出問題
如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
類比探究
如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說明理由.
拓展延伸
如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
(1)證明見試題解析;(2)成立,理由見試題解析;(3)∠ABC=∠ACN,理由見試題解析.
【解析】
試題分析:(1)利用SAS可證明△BAM≌△CAN,繼而得出結(jié)論;
(2)也可以通過證明△BAM≌△CAN,得出結(jié)論,和(1)的思路完全一樣;
(3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到,根據(jù)∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,得出結(jié)論.
試題解析:(1)∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN;
(2)結(jié)論∠ABC=∠ACN仍成立.理由如下:
∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN;
(3)∠ABC=∠ACN.理由如下:
∵BA=BC,MA=MN,頂角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴,則,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.
考點(diǎn):1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.等邊三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
提出問題
如圖,在△ABC中,∠A=90°,分別以邊AB、AC向外作正方形ABDE 和正方形 ACFG,連接EG,小亮發(fā)現(xiàn)△ABC與△AEG面積相等.小亮思考:這個(gè)問題中,如果∠A≠90°,那么△ABC與△AEG面積是否仍然相等?
猜想結(jié)論
經(jīng)過研究,小亮認(rèn)為:上述問題中,對(duì)于任意△ABC,分別以邊AB、AC向外作正方形ABDE 和正方形 ACFG,連接EG,那么△ABC與△AEG面積相等.
證明猜想
(1)請(qǐng)你幫助小亮畫出圖形,并完成證明過程.已知:以△ABC的兩邊AB、AC為邊長分別向外作正方形ABDE、ACFG,連接GE.求證:S△AEG=S△ABC.
結(jié)論應(yīng)用
(2)學(xué)校教學(xué)樓前的一個(gè)六邊形花圃被分成七個(gè)部分,分別種上不同品種的花卉,其中四邊形ABCD、CIHG、GFED均為正方形,且面積分別為9m2、5m2和4m2.求這個(gè)六邊形花圃ABIHFE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com