已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).當拋物線經(jīng)過原點,并且頂點在第四象限時,求出它所對應(yīng)的函數(shù)關(guān)系式.
考點:二次函數(shù)圖象上點的坐標特征
專題:
分析:將原點坐標代入拋物線的解析式中,即可求出n的值,然后根據(jù)拋物線頂點在第四象限將不合題意的n值舍去,即可得出所求的二次函數(shù)解析式.
解答:解:由已知條件,得n2-1=0,
解這個方程,得n1=1,n2=-1.
當n=1時,得y=x2+x,此拋物線的頂點不在第四象限;
當n=-1時,得y=x2-3x,此拋物線的頂點在第四象限.
故所求的函數(shù)關(guān)系為y=x2-3x.
點評:本題主要考查二次函數(shù)圖象上點的坐標特征及二次函數(shù)解析式的確定,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,CD為AB上的高,AF為∠BAC的角平分線,AF交CD于點E,交BC于點F.
(1)如圖1,①∠ACD
 
∠B(選填“<,=,>”中的一個)②如圖1,求證:CE=CF;
(2)如圖1,作EG∥AB交BC于點G,若AD=a,△EFG為等腰三角形,求AC(含a的代數(shù)式表示);
(3)如圖2,過BC上一點M,作MN⊥AB于點N,使得MN=ED,探索BM與CF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是由10個半徑相同的圓組合而成的煙花橫截面,點A、B、C分別是三個角上的圓的圓心,且三角形ABC為等邊三角形.若圓的半徑為r,組合煙花的高為h,則組合煙花側(cè)面包裝紙的面積至少需要(接縫面積不計)(  )
A、18πrh
B、2πrh+18rh
C、πrh+12rh
D、2πrh+12rh

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
13
,求這個三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積,這種方法叫做構(gòu)圖法.
(1)則△ABC的面積為
 

(2)如圖△PQR,以三邊向形外作正方形,正方形的面積分別為10、13、17,請根據(jù)前面正方形網(wǎng)格求面積的方法求△PQR的面積為
 

(3)在圖②中畫△DEF,使DE、EF、DF的長分別為
2
8
、
10
,判斷三角形的形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:
16
-
9
+
3-27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

與拋物線y=x2-2x-1關(guān)于y軸對稱的拋物線解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若二次函數(shù)y=ax2+bx+c的圖象開口向下、頂點坐標為(2,-3),則此函數(shù)有( 。
A、最小值2B、最小值-3
C、最大值2D、最大值-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,點C(-4,0),點A,B分別在x軸,y軸的正半軸上,線段OA、OB的長度都是方程x2-3x+2=0的解,且OB>OA.若點P從C點出發(fā),以每秒1個單位的速度沿射線CB運動,連結(jié)AP.
(1)判斷三角形ABC的形狀并求出△AOP的面積S關(guān)于點P的運動時間t秒的函數(shù)關(guān)系式.
(2)在點P的運動過程中,利用備用圖1探究,求△AOP周長最短時點P運動的時間.
(3)在點P的運動過程中,利用備用圖2探究,是否存在點P,使以點A,B,P為頂點的三角形與△AOB相似?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

求下列各式中的值.
(1)(x+3)2=1
(2)(7x+3)3+64=0.

查看答案和解析>>

同步練習冊答案