如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF;
②當AB=4,AD=時,求線段BG的長.
解:(1)BD=CF成立。理由如下:
∵△ABC是等腰直角三角形,四邊形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°。
∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF。
在△BAD和△CAF中,∵AB=AC,∠BAD=∠CAF,
∴△BAD≌△CAF(SAS)!郆D=CF。
(2)①證明:設(shè)BG交AC于點M.
∵△BAD≌△CAF(已證),∴∠ABM=∠GCM。
又∵∠BMA=∠CMG,∴△BMA∽△CMG。
∴∠BGC=∠BAC=90°!郆D⊥CF。
②過點F作FN⊥AC于點N。
∵在正方形ADEF中,AD=DE=,
∴。
∴AN=FN=AE=1。
∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,。
∴在Rt△FCN中,。
在Rt△ABM中,。
∴AM=。
∴CM=AC﹣AM=4﹣,。
∵△BMA∽△CMG,∴,即,∴CG=。
∴在Rt△BGC中,。
解析
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com