【答案】
分析:(1)設(shè)出拋物線解析式y(tǒng)=a(x-h)
2+k,依據(jù)它的頂點(diǎn)坐標(biāo)和所經(jīng)過的B點(diǎn)坐標(biāo),即可求出拋物線的解析式;
(2)①根據(jù)已知,很容易就可以得到D點(diǎn)的坐標(biāo),E點(diǎn)為動(dòng)點(diǎn),分情況討論:當(dāng)點(diǎn)E與B重合時(shí);當(dāng)點(diǎn)E與O重合時(shí);當(dāng)點(diǎn)E與A重合時(shí);當(dāng)點(diǎn)E不與B、O、A重合時(shí),結(jié)合拋物線解析式,設(shè)出E點(diǎn)的坐標(biāo),依據(jù)勾股定理,求出DE關(guān)于x、y的表達(dá)式,然后,根據(jù)E點(diǎn)的橫坐標(biāo)和N點(diǎn)的橫坐標(biāo)相同,求出EN關(guān)于x、y的表達(dá)式,即可看出它們相等;
②提出假設(shè),根據(jù)已知點(diǎn)的坐標(biāo)求證相關(guān)點(diǎn)的坐標(biāo),便可得知相關(guān)線段的長度,即可求證E點(diǎn)的坐標(biāo).
解答:解:(1)設(shè)拋物線的解析式為y=a(x-h)
2+k,
∵拋物線的頂點(diǎn)A(2,-1)且過點(diǎn)B(4,0),
∴y=a(x-2)
2-1,
且0=4a-1,
∴a=
,
∴拋物線的解析式為y=
(x-2)
2-1=
x
2-x;
(2)①猜想:DE=NE,
證明:∵點(diǎn)D為拋物線對(duì)稱軸與x軸的交點(diǎn),
∴得D(2,0),
當(dāng)點(diǎn)E與B重合時(shí),
∵D(2,0),B(4,0),
∴ED=2,
∵過E作直線y=-2的垂線,垂足為N,
∴EN=2,
∴DE=EN
當(dāng)點(diǎn)E與O重合時(shí),
∵D(2,0),
DE=2,EN=2,
∴DE=EN
當(dāng)點(diǎn)E與A重合時(shí),
∵D(2,0),
DE=2,EN=2,
∴DE=EN
當(dāng)點(diǎn)E與A重合時(shí),
∵A(2,-1),EN=2
∴DE=1,EN=1,
∴DE=EN,
當(dāng)點(diǎn)E不與B、O、A重合時(shí),
設(shè)E點(diǎn)坐標(biāo)為
,EN交x軸于點(diǎn)F,
在Rt△DEF中,DE
2=DF
2+EF
2=(x-2)
2+y
2,
又∵NE=y+2,
∴
=y
2+x
2-4x+4=(x-2)
2+y
2,
∴DE=NE,
綜上所述,DE=NE;
②答:存在,
當(dāng)點(diǎn)E在x軸上時(shí)△EDN為直角三角形,點(diǎn)E在x軸下方時(shí)△EDN為鈍角三角形,所以只當(dāng)E在x軸上方時(shí)△EDN才可能為等邊三角形,
理由一:若△EDN為等邊三角形,
∵DE=NE=DN,且EN⊥x軸,
∴EF=FN=2,
∴y=
x
2-x=2,
解得 x=2±2
,
∴點(diǎn)E的坐標(biāo)為
,
理由二:若△EDN為等邊三角形,
∵DE=NE=DN,且EN⊥x軸,
∴∠EDF=30°,EF=FN=2,
在Rt△DEF中,
,
∴
,
∵DA是拋物線的對(duì)稱軸,且D(2,0),
∴根據(jù)拋物線的對(duì)稱性得點(diǎn)E的坐標(biāo)為
.
點(diǎn)評(píng):本題主要考查二次函數(shù)解析式的確定,根據(jù)解析式求點(diǎn)的坐標(biāo)、勾股定理等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法