【題目】如圖,直升飛機在大橋AB上方C點處測得A,B兩點的俯角分別為45°和31°.若飛機此時飛行高度CD為1205m,且點A,B,D在同一條直線上,求大橋AB的長.(精確到1m)(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】大橋的長約為803m.
【解析】
先由俯角的定義及平行線的性質(zhì)得出∠ECB=45°,∠ECA=31°.在Rt△ACD中,由正切函數(shù)的定義得出CD,在Rt△DCB中,由等腰三角形的性質(zhì)得出BD=CD=1205m,再根據(jù)AB=AD-BD即可得出結(jié)論.
∵∠ECA=31°,∠ECB=45°,
∴∠CAD=31°,∠CBD=45°.
∵∠ADC=90°,∠CAD=31°,CD=1205,
∴AD==≈2008.3,
∵∠ADC=90°,∠CBD=45°,CD=1205,
∴BD=CD=1205,
∴AB=AD﹣BD≈2008.3﹣1205≈803(m).
答:大橋BD的長約為803m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過三點,且.
(1)求的值;
(2)在拋物線上求一點使得四邊形是以為對角線的菱形;
(3)在拋物線上是否存在一點,使得四邊形是以為對角線的菱形?若存在,求出點的坐標,并判斷這個菱形是否為正方形?若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校根據(jù)課程設置要求,開設了數(shù)學類拓展性課程,為了解學生最喜歡的課程內(nèi)容,隨機抽取了部分學生進行問卷調(diào)查(每人必須且只選中其中一項),并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:
(1)求m,n的值.
(2)補全條形統(tǒng)計圖.
(3)該校共有1200名學生,試估計全校最喜歡“數(shù)學史話”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】年新冠肺炎疫情發(fā)生以來,每天測體溫成為一種制度,手持紅外測溫槍成為緊俏商品.某經(jīng)銷店承諾對所有商品明碼標價,絕不哄抬物價.如下表所示是該店甲、乙兩種手持紅外測溫槍的進價和售價:
商品 價格 | 甲 | 乙 |
進件(元個) | ||
售價(元個) |
該店有一批用元購進的甲、乙兩種手持紅外測溫槍庫存,預計全部銷售后可獲毛利潤共元.[毛利潤(售價進價)銷售量]
(1)該店庫存的甲、乙兩種手持紅外測溫槍分別為多少個?
(2)根據(jù)銷售情況,該店計劃增加甲種手持紅外測溫槍的購進量,減少乙種手持紅外測溫槍的購進量.已知甲種手持紅外測溫槍增加的數(shù)量是乙種手持紅外測溫槍減少的數(shù)量的倍,進貨價不變,而且用于購進這兩種手持紅外測溫槍的總資金不超過元,則該店怎樣進貨,可使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)售票處規(guī)定:非節(jié)假日的票價打a折售票;節(jié)假日根據(jù)團隊人數(shù)x(人)實行分段售票:若x≤10,則按原展價購買;若x>10,則其中10人按原票價購買,超過部分的按原那價打b折購買.某旅行社帶團到該景區(qū)游覽,設在非節(jié)假日的購票款為y1元,在節(jié)假日的購票款為y2元,y1、y2與x之間的函數(shù)圖象如圖所示.
(1)觀察圖象可知:a= ,b= ;
(2)當x>10時,求y2與x之間的函數(shù)表達式;
(3)該旅行社在今年5月1目帶甲團與5月10日(非節(jié)假日)帶乙國到該景區(qū)游覽,兩團合計50人,共付門票款3120元,已知甲團人數(shù)超過10人,求甲團人數(shù)與乙團人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+mx(m<0)交x軸于O,A兩點,頂點為點B.
(1)求△AOB的面積(用含m的代數(shù)式表示);
(2)直線y=kx+b(k>0)過點B,且與拋物線交于另一點D(點D與點A不重合),交y軸于點C.過點C作CE∥AB交x軸于點E.
(。 若∠OBA=90°,2<<3,求k的取值范圍;
(ⅱ) 求證:DE∥y軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機抽取部分學生書法作品的評定結(jié)果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:
根據(jù)上述信息完成下列問題:
(1)在這次抽樣調(diào)查中,共抽查了多少名學生?
(2)請在圖②中把條形統(tǒng)計圖補充完整;
(3)求出扇形統(tǒng)計圖中“D級”部分所對應的扇形圓心角的大小;
(4)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與點B,C重合),過點C作CN⊥DM交AB于點N,連結(jié)OM、ON,MN.下列五個結(jié)論:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,則S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正確結(jié)論是_____;(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中放入個大小形狀幾乎完全相同實驗用的雞蛋,雞蛋的質(zhì)量有微小的差距(用手感覺不到差異),質(zhì)量分別為、、克,已知隨機的摸出一個雞蛋,摸到克和克的雞蛋的概率是相等的.
(1)求這四個雞蛋質(zhì)量的眾數(shù)和中位數(shù)
(2)小明做實驗需要拿走一個雞蛋,芳芳在小明拿走后從剩下的三個雞蛋中隨機的拿走一個
①通過計算分析小明拿走一個雞蛋后,剩下的三個雞蛋質(zhì)量的中位數(shù)是多少?
②假設小明拿走的雞蛋質(zhì)量為克,芳芳隨機的拿出一個雞蛋后又放回,之后再隨機的拿出一個雞蛋,請用樹狀圖求芳芳兩次拿到都是克的雞蛋的概率?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com