如圖,一次函數(shù)y=x-5分別交x軸、y軸于A、B兩點,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點.
(1)求二次函數(shù)的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個動點(E點位于D點上方),DE=
2

①若點D的橫坐標(biāo)為t,用含t的代數(shù)式表示D、E的坐標(biāo);
②拋物線上是否存在點F,使點F與點D關(guān)于x軸對稱,如果存在,請求出△AEF的面積;如果不存在,請說明理由.
(1)由題意可得A(5,0)B(0,-5)
代入解析式y(tǒng)=-x2+bx+c
解得
b=6
c=-5
,
∴解析式為:y=-x2+6x-5.

(2)①作DQy軸EQ⊥DQ
∵OA=5,OB=5
∴△OAB為等腰直角三角形
△DEQ△BAO
∵△DQE為等腰直角三角形
∴DE=
2
,
∴DQ=EQ=1
∴D(t,t-5)
E(t+1,t-4)
②∵F與D關(guān)于x軸對稱
∴F(t,5-t)代入拋物線解析式
得5-t=-t2+6t-5
解得t1=2 t2=5
∵D、E異于A、B兩點
∴t=5舍去
∴t=2,
∴F(2,3),D (2,-3),E (3,-2),
∴AE=2
2
,EF=
26
,AF=3
2

∴AE2+AF2=EF2,
∴∠EAF=90°,
∴S△AEF=2
2
×3
2
×
1
2
=6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負(fù)半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標(biāo);
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線交x軸于A,B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3).
(1)求這個拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點P,使點P到A、C兩點間的距離之和最小.若存在,求出點P的坐標(biāo);若不存在,請說明理由.
(3)如果在x軸上方平行于x軸的一條直線交拋物線于M,N兩點,以MN為直徑作圓恰好與x軸相切,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=-
3
x2-2
3
(a-1)x-
3
(a2-2a)與x軸交于點A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B兩點的坐標(biāo)(用a表示);
(2)設(shè)拋物線的頂點為C,求△ABC的面積;
(3)若a是整數(shù),P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,求拋物線的解析式及線段PQ的長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于半徑為4的☉0,過0作BC的垂線,垂足為F,且交☉0于P、Q兩點.OD、OE的長分別是拋物線y=x2+2mx+m2-9與x軸的兩個交點的橫坐標(biāo).
(1)求拋物線的解析式;
(2)是否存在直線l,使它經(jīng)過拋物線與x軸的交點,并且原點到直線l的距離是2?如果存在,請求出直線l的解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

有一個拋物線形拱橋,其最大高度為16米,跨度為40米,現(xiàn)把它的示意圖放在如圖所示的平面直角坐標(biāo)系中,則此拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,英華學(xué)校準(zhǔn)備圍成一個中間隔有一道籬笆的長方形花圃,現(xiàn)有長為24m的籬笆,一面靠墻(墻長為10m),設(shè)花圃寬AB為x(m),面積為S(m2).
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少;
(3)能圍出比45m2更大的花圃嗎?若能,求出最大的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點在x軸上,且sinA、sinB是關(guān)于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個根.
(1)判斷△ABC的形狀,關(guān)說明理由;
(2)求m的值;
(3)若這個三角形的外接圓面積為25π,求△ABC的內(nèi)接正方形(四個頂點都在三角形三邊上)的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
18
x2-
4
9
x-10與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DEOA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)0<t<
9
2
時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

同步練習(xí)冊答案