【題目】1)在直角三角形中,有一個(gè)銳角是另一個(gè)銳角的2倍,則較小的銳角為__________

2)在中,,,CD平分,點(diǎn)D,E分別在AB,AC上,且,則__________

【答案】

【解析】

1)較小的銳角為x,根據(jù)直角三角形的兩銳角互余列式計(jì)算,即可得到答案;

2)首先利用三角形內(nèi)角和定理得出∠ACB的度數(shù),再利用平行線的性質(zhì)以及角平分線的定義分析得出答案.

1)設(shè)較小的銳角為x,則較大的銳角為2x

x+2x=90°,

解得:x=30°.

2)∵∠A=62°,∠B=74°,

∴∠ACB=180°﹣62°﹣74°=44°.

CD平分∠ACB,

∴∠ACD=DCB=22°.

DEBC,

∴∠EDC=DCB=22°.

故答案為:30°,22°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)B′的位置,AB′CD交于點(diǎn)E

1)求證:△AED≌△CEB′;

2)求證:點(diǎn)E在線段AC的垂直平分線上;

3)若AB=8,AD=3,求圖中陰影部分的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.

1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?

2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬元(a0),市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張如圖1的長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則ab滿足( )

A.a=bB.a=3bC.a=bD.a=4b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)校教學(xué)樓AB的后面有一建筑物CD,在距離CD正后方28米的觀測(cè)點(diǎn)P處,以22°的仰角測(cè)得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面2米高的E處,測(cè)得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cy軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)Px軸的垂線PQ,過點(diǎn)AAQPQ于點(diǎn)Q,連接AP.

(1)填空:拋物線的解析式為   ,點(diǎn)C的坐標(biāo)   

(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若AQP∽△AOC,求點(diǎn)P的坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對(duì)稱軸的右側(cè),若將APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q',請(qǐng)直接寫出當(dāng)點(diǎn)Q'落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.

(Ⅰ)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長=   ;

(Ⅱ)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);

(Ⅲ)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了美化環(huán)境,計(jì)劃在一定的時(shí)間內(nèi)完成綠化面積萬畝的任務(wù),后來市政府調(diào)整了原定計(jì)劃,不但綠化面積要在原計(jì)劃的基礎(chǔ)上增加,而且要提前年完成任務(wù),經(jīng)測(cè)算要完成新的計(jì)劃,平均每年的綠化面積必須比原計(jì)劃多萬畝,求原計(jì)劃平均每年的綠化面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案