【題目】在學習了“求簡單隨機事件發(fā)生的可能性大小”知識后,小敏,小聰,小麗三人分別編寫了一道有關隨機事件的試題并進行了解答.小敏,小聰,小麗編寫的試題分別是下面的(1)(2)(3).

(1)一個不透明的盒子里裝有4個紅球,2個白球,除顏色外其它都相同,攪均后,從中隨意摸出一個球,摸出紅球的可能性是多少?解:P(摸出一個紅球)=

(2)口袋里裝有如圖所示的1角硬幣2枚、5角硬幣2枚、1 元硬幣1枚.攪均后,從中隨意摸出一枚硬幣,摸出1角硬幣的可能性是多少?解:P(摸出1角的硬幣)=

(3)如圖,是一個轉(zhuǎn)盤,盤面上有5個全等的扇形區(qū)域,每個區(qū)域顯示有不同的顏色,輕輕轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針對準紅色區(qū)域的可能性是多少?解:P(指針對準紅色區(qū)域)=

問題:根據(jù)以上材料回答問題:小敏,小聰,小麗三人中,誰編寫的試題及解答是正確的,并簡要說明其他兩人所編試題或解答的不足之處.

【答案】見解析

【解析】用概率表示隨機事件可能性的大小,前提是每個結果發(fā)生的可能性都相等,要體現(xiàn)隨機性.

小麗的試題中,因為輕輕轉(zhuǎn)動轉(zhuǎn)盤時,指針指向每個區(qū)域機會不等,不具有隨機性,也不符合每個結果發(fā)生的可能性都相同的條件,因此也不能用上述解答方法解答.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:

租金(單位:元/時)

挖掘土石方量(單位:m3/時)

甲型挖掘機

100

60

乙型挖掘機

120

80

1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?

2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小紅晚上在一條筆直的小路上由A處徑直走到B處,小路的正中間有一盞路燈,那么小紅在燈光照射下的影長l與她行走的路程s之間的變化關系用圖象刻畫出來大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC沿直線l向右移了3厘米,得FDE,且BC6厘米,∠B40°.

(1)BE

(2)求∠FDB的度數(shù);

(3)找出圖中相等的線段(不另添加線段);

(4)找出圖中互相平行的線段(不另添加線段)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點D、E、F,那么AF、BD、CE的長分別為( 。

A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的三邊長a=3,b=4,c=5,則它的內(nèi)切圓半徑是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點D、E、F,且∠ACB=90°,AB=5,BC=3,點P是邊AC上的一動點,PH⊥AB,垂足為H.
(1)求⊙O的半徑的長及線段AD的長;
(2)設PH=x,PC=y,求y關于x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:O是直線AB上一點,∠COD是直角,OE平分∠BOC

(1)如圖1,若∠AOC=30°,求∠DOE的度數(shù)。

(2)如圖1,若∠AOC=,直接寫出∠DOE的度數(shù)。(用含的代數(shù)式表示)

(3)將圖1中的∠DOC繞頂點O順時針旋轉(zhuǎn)至圖2的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關系,寫出結論,并說明理由。

(4)在圖2中,若∠AOC內(nèi)部有一條射線OF,且滿足∠AOC-4∠AOF=2∠BOE,其它條件不變,試寫出∠AOF與∠DOE度數(shù)的關系(不寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+1x軸、y軸分別交于點A、B,以線段AB為直角邊在第﹣象限內(nèi)作等腰直角△ABC,∠BAC=90°,

(1)求點A、B、C的坐標;

(2)如果在第二象限內(nèi)有﹣點P(a,),且△ABP的面積與△ABC的面積相等,求a的值;

(3)請直接寫出點Q的坐標,使得以Q、A、C為頂點的三角形和△ABC全等.

查看答案和解析>>

同步練習冊答案