如圖,在△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經(jīng)過點(diǎn)E,交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)已知sinA=,⊙O的半徑為4,求圖中陰影部分的面積.
考點(diǎn):
切線的判定;扇形面積的計(jì)算。
分析:
(1)連接OE.根據(jù)OB=OE得到∠OBE=∠OEB,然后再根據(jù)BE是△ABC的角平分線得到∠OEB=∠EBC,從而判定OE∥BC,最后根據(jù)∠C=90°得到∠AEO=∠C=90°證得結(jié)論AC是⊙O的切線.
(2)連接OF,利用S陰影部分=S梯形OECF﹣S扇形EOF求解即可.
解答:
解:(1)連接OE.
∵OB=OE
∴∠OBE=∠OEB
∵BE是△ABC的角平分線
∴∠OBE=∠EBC
∴∠OEB=∠EBC
∴OE∥BC
∵∠C=90°
∴∠AEO=∠C=90°
∴AC是⊙O的切線;
(2)連接OF.
∵sinA=,∴∠A=30°
∵⊙O的半徑為4,∴AO=2OE=8,
∴AE=4,∠AOE=60°,∴AB=12,
∴BC=AB=6 AC=6,
∴CE=AC﹣AE=2.
∵OB=OF,∠ABC=60°,∴△OBF是正三角形.
∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.
∴S梯形OECF=(2+4)×2=6.
S扇形EOF==
∴S陰影部分=S梯形OECF﹣S扇形EOF=6﹣.
點(diǎn)評:
本題考查了切線的判定與性質(zhì)及扇形面積的計(jì)算,解題的關(guān)鍵是連接圓心和切點(diǎn),利用過切點(diǎn)且垂直于過切點(diǎn)的半徑來判定切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com