【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判斷∠ADC是否是直角,并說明理由;
(2)試求四邊形草坪ABCD的面積.
【答案】(1)∠D是直角,理由見解析;(2)234m2.
【解析】
(1)連接AC,先根據(jù)勾股定理求出AC的長,再求出AD的長,結(jié)合勾股定理的逆定理得到∠D是直角;
(2)由S四邊形ABCD=S△ABC+S△ADC即可得出結(jié)論.
(1)∠D是直角,理由如下:
連接AC,
∵∠B=90°,AB=24m,BC=7m,
∴AC2=AB2+BC2=242+72=625,
∴AC=25(m).
又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,
∴△ACD是直角三角形,或∠D是直角;
(2)S四邊形ABCD=S△ABC+S△ADC
=234(m2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用三種大小不等的正方形①②③和…個缺角的正方形拼成一個長方形ABCD(不重疊且沒有縫隙),若GH=a,GK=a+1,BF=a﹣2
(1)試用含a的代數(shù)式表示:正方形②的邊長CM的長= ,正方形③的邊長DM的長= ;
(2)求長方形ABCD的周長(用含a的代數(shù)式表示);并求出當(dāng)a=3時,長方形周長的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1 , S2 , S3 , 若S1+S2+S3=10,則S2的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)有兩塊邊長為x米的正方形空地,現(xiàn)設(shè)想按兩種方式種植草皮,方式一:如圖①,在正方形空地上留兩條寬為2m米的路,其余種植草皮;方式二:如圖②,在正方形空地四周各留一塊邊長為m米的正方形空地植樹,其余種植草皮.學(xué)校準備兩種方式都用5000元購進草皮.
(1)寫出按圖①,②兩種方式購買草皮的單價;
(2)當(dāng)x=14,m=2時,求按兩種方式購買草皮的單價各是多少(結(jié)果均保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點C在直線l上.
操作:
過點A作AD⊥l于點D,過點B作BE⊥l于點E.求證:△CAD≌△BCE.
模型應(yīng)用:
(1)如圖2,在直角坐標系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達式.
(2)如圖3,在直角坐標系中,點B(8,6),作BA⊥y軸于點A,作BC⊥x軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.
(2)請你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達式;
(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊后,使得點D與點B重合,點C落在點C′的位置上.
(1)△BEF是等腰三角形嗎?試說明理由;
(2)若AB=4,AD=8,求CF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,截面圓圓心O到水面的距離OC是6,則水面寬AB是( )
A.16
B.10
C.8
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市積極開展“陽光體育進校園”活動,各校學(xué)生堅持每天鍛煉一小時,某校根據(jù)實際,決定主要開設(shè)A:乒乓球,B:籃球,C:跑步,D:跳繩四種運動項目,為了解學(xué)生最喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖.請你結(jié)合圖中信息解答下列問題.
(1)請計算最喜歡B項目的人數(shù)所占的百分比.
(2)請計算D項所在扇形圖中的圓心角的度數(shù).
(3)請把統(tǒng)計圖補充完整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com