【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長.

【答案】
(1)證明:連接CD,

∵BC為⊙O的直徑,∴CD⊥AB,

又∵AC=BC,

∴AD=BD,即點D是AB的中點


(2)解:DE是⊙O的切線.

證明:連接OD,則DO是△ABC的中位線,

∴DO∥AC,

又∵DE⊥AC,

∴DE⊥DO即DE是⊙O的切線


(3)解:∵AC=BC,∴∠B=∠A,

∴cosB=cosA= ,

∵cosB= ,BC=18,

∴BD=6,

∴AD=6,

∵cosA= ,

∴AE=2,

在Rt△AED中,DE=


【解析】(1)利用直徑所對的圓周角是直角得出CD⊥AB,再由等腰三角形的三線合一得出結(jié)論;(2)由中位線定理得出DO∥AC,又由DE⊥AC,得出DE⊥DO即DE是⊙O的切線;(3)由等腰三角形的性質(zhì)得出∠B=∠A,再根據(jù)等角的同名三角函數(shù)相等得出cosA= 得出AE的值,最后根據(jù)勾股定理得出結(jié)論。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,使點A′落在BC的延長線上.已知∠A=27°,∠B=40°,則∠ACB′是( )

A.46°
B.45°
C.44°
D.43°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:某校一塊長為2a米的正方形空地是七年級四個班的清潔區(qū),其中分給七年級(1)班的清潔區(qū)是一塊邊長為(a-2b)米的正方形,(0<b<).

1)分別求出七(2)、七(3)班的清潔區(qū)的面積;

2)七(4)班的清潔區(qū)的面積比七(1)班的清潔區(qū)的面積多多少平方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=90°,點D在線段BC上,∠EDB= ∠C,BE⊥DE,垂足E,DE與AB相交于點F.
(1)當AB=AC時,(如圖1),

① ∠EBF=°;
②求證:BE= 1 2 FD;
(2)當AB=kAC時(如圖2),求 的值(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于點,若點的坐標為,則稱點是點的“演化點”.例如,點的“演化點”為,即.

(1)已知點的“演化點”是,則的坐標為________;

(2)已知點,且點的“演化點”是,則的面積__________;

(3)己知, ,,且點的“演化點”為,當時,___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點,分別是邊,上的點,點是一動點.,.

1)若點在線段上,且,如圖1,則_____________;

2)若點在邊上運動,如圖2所示,請猜想,,之間的關(guān)系,并說明理由;

3)若點運動到邊的延長線上,如圖3所示,則,,之間又有何關(guān)系?請直接寫出結(jié)論,不用說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE是中位線,若四邊形EDCB的面積是30cm2 , 則△AED的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:

頻數(shù)分布表

身高分組

頻數(shù)

百分比

x155

5

10%

155≤x160

a

20%

160≤x165

15

30%

165≤x170

14

b

x≥170

6

12%

總計

100%

(1)填空:a=____,b=____

(2)補全頻數(shù)分布直方圖;

(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“√、×、√”,B組的卡片上分別畫上“√、×、×”,如圖1所示.

(1)若將卡片無標記的一面朝上擺在桌上,再發(fā)布從兩組卡片中隨機各抽取一張,求兩張卡片上標記都是√的概率(請用樹形圖法或列表法求解)
(2)若把A、B兩組卡片無標記的一面對應(yīng)粘貼在一起得到3張卡片,其正反面標記如圖2所示,將卡片正面朝上擺放在桌上,并用瓶蓋蓋住標記.
①若隨機揭開其中一個蓋子,看到的標記是√的概率是多少?
②若揭開蓋子,看到的卡片正面標記是√后,猜想它的反面也是√,求猜對的概率.

查看答案和解析>>

同步練習冊答案