在Rt△ABC中,∠A=90°,AD⊥BC垂足為D,若BC=m,∠B=α,則AD長為
 
分析:在Rt△ABC中,解直角三角形求出AB,在Rt△ADB中,解直角三角形求出AD即可.
解答:精英家教網(wǎng)
解:在Rt△ABC中,∠A=90°,BC=m,∠B=α,
∴AB=BC•cos∠B=m•cosα,
∵AD⊥BC,
∴∠ADB=90°,
∴AD=AB•sin∠B
=m•cosα•sinα,
故答案為:m•cosα•sinα.
點評:本題考查了解直角三角形的性質(zhì),注意:在Rt△ACB中,∠ACB=90°,則sinA=
BC
AB
,cosA=
AC
AB
,tanA=
BC
AC
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習冊答案