(2012•錦州二模)如圖,已知PA、PB是⊙O的兩條切線,A、B是切點(diǎn),連接OP.
(1)求證:PA=PB;
(2)若⊙O的半徑為2,PA=2
3
,求陰影部分面積.
分析:(1)連接OA、OB,利用切線的性質(zhì)和全等三角形的證明方法證明Rt△PAO≌Rt△PBO即可;
(2)利用三角形的面積公式及扇形的面積公式求出四邊形PAOB的面積與扇形OAB的面積,兩者相減即可求出陰影部分的面積.
解答:(1)證明:連接OA、OB,
∵PA、PB是⊙O的兩條切線,A、B是切點(diǎn),
∴∠OAP=∠OBP=90°.
又∵OA=OB,
在Rt△PAO和Rt△PBO中,
∵PO=PO,OA=OB,
∴Rt△PAO≌Rt△PBO(HL).
∴PA=PB;
(2)解:由(1)知△PAO≌△PBO,
∴∠APO=∠BPO,∠AOP=∠BOP.
在Rt△PAO中,OA=2,PA=2
3
,
tan∠APO=
AO
PA
=
2
2
3
=
3
3
,
∴∠APO=30°,∠AOP=60°.
∴∠AOB=120°,
S陰影=S四邊形APBO-S扇形=2S△PAO-S扇形=2×
1
2
×2×2
3
-
120×π×22
360
=4
3
-
3
點(diǎn)評(píng):此題考查了切線的性質(zhì),直角三角形的性質(zhì)及陰影部分面積的求法.陰影部分面積的求法是:規(guī)則圖形根據(jù)面積公式來求;不規(guī)則圖形采用“割補(bǔ)湊正法”,即將不規(guī)則的圖形通過割補(bǔ)拼湊成一個(gè)或幾個(gè)規(guī)則的圖形,從而求出陰影部分面積.遇到切線,往往連接圓心與切點(diǎn),構(gòu)造直角三角形來解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)如圖是由幾個(gè)小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示在該位置的小立方塊的個(gè)數(shù),那么這個(gè)幾何體的主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)如圖,在直角坐標(biāo)系中.Rt△ABC位于第一象限,兩條直角邊AB、BC分別平行于x軸、y軸,頂點(diǎn)B的坐標(biāo)為(2,4),AB=1,BC=2.
(1)求AC邊所在直線的解析式;
(2)若反比例函數(shù)y=
m
x
(x>0)的圖象經(jīng)過點(diǎn)C,求該反比例函數(shù)的解析式,并通過計(jì)算判斷點(diǎn)A是否在該函數(shù)的圖象上;
(3)若反比例函數(shù)y=
m
x
(x>0)的圖象與△ABC有公共點(diǎn),請(qǐng)直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)2012年三八婦女節(jié)期間,某學(xué)校為了解該校500名學(xué)生中大約有多少學(xué)生知道自己母親的生日,在校門口隨機(jī)調(diào)查了100名學(xué)生,結(jié)果只有30名學(xué)生知道自己母親的生日.對(duì)于這個(gè)關(guān)于數(shù)據(jù)收集與整理的問題,下列描述不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)若三角形的三邊長分別為3,5,x-2,則x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)6的平方根為
±
6
±
6

查看答案和解析>>

同步練習(xí)冊(cè)答案