已知∠AOB=90°,點P在∠AOB的平分線上,OP=6,則點P到OA,OB的距離為


  1. A.
    6,6
  2. B.
    3,3
  3. C.
    3,3數(shù)學(xué)公式
  4. D.
    3數(shù)學(xué)公式,3數(shù)學(xué)公式
D
分析:利用角平分線的性質(zhì)計算.
解答:解:作PC⊥OA于C,由題意可得
△OPC是等腰直角三角形,
因為OP=6,
根據(jù)勾股定理可得PC=3,
根據(jù)角平分線的性質(zhì),
點P到OB的距離為3
故選D.
點評:此題主要考查角平分線的性質(zhì)和勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標(biāo)為(-3精英家教網(wǎng),1).
(1)求點B的坐標(biāo);
(2)求過A,O,B三點的拋物線的解析式;
(3)設(shè)點B關(guān)于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知∠AOB=90°,OM是∠AOB的平分線,將一個直角RPS的直角頂點P在射線OM上移動,精英家教網(wǎng)點P不與點O重合.
(1)如圖,當(dāng)直角RPS的兩邊分別與射線OA、OB交于點C、D時,請判斷PC與PD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖,在(1)的條件下,設(shè)CD與OP的交點為點G,且PG=
3
2
PD
,求
GD
OD
的值;
(3)若直角RPS的一邊與射線OB交于點D,另一邊與直線OA、直線OB分別交于點C、E,且以P、D、E為頂點的三角形與△OCD相似,請畫出示意圖;當(dāng)OD=1時,直接寫出OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、已知∠AOB=90°,OC為一射線,OM,ON分別平分∠BOC和∠AOC,求∠MON的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC.
(1)求∠DOE的度數(shù).
(2)如果原題中∠AOC=60°改為∠AOC是銳角,能否求出∠DOE?若能求出來;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,∠BOC=β(β為銳角),其他條件不變,求∠MON的度數(shù);
(3)從(1)、(2)的結(jié)果中能得出什么結(jié)論?

查看答案和解析>>

同步練習(xí)冊答案