解答:

當a=-2,b=1,c=3時,求代數(shù)式的值:

①c-(c-a)(c-b);②

;④

答案:
解析:

①-7;②;③;④


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分8分)如圖,已知AB是⊙O的弦,OB=2,∠B=30°,

C是弦AB上的任意一點(不與點A、B重合),連接CO并延長CO交
于⊙O于點D,連接AD.
(1)弦長AB等于 ▲ (結(jié)果保留根號);
(2)當∠D=20°時,求∠BOD的度數(shù);
(3)當AC的長度為多少時,以A、C、D為頂點的三角形與以B、
C、O為頂點的三角形相似?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年海南洋浦中學七年級上學期期中考試數(shù)學試題(解析版) 題型:解答題

解答發(fā)現(xiàn):⑴ 當a=3,b=2時,分別求代數(shù)式(a+b)2和a2+2ab+b2的值,并觀察這兩個代數(shù)式的值有什么關系?(3分)

⑵再多找?guī)捉M你喜歡的數(shù)試一試,從中你發(fā)現(xiàn)了什么規(guī)律?(2分)

⑶利用你所發(fā)現(xiàn)的規(guī)律計算a=1. 625,b=0. 375時,a2+2ab+b2的值?(3分)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江天門市九年級三輪考試數(shù)學卷(一)(解析版) 題型:解答題

閱讀下列材料,按要求解答問題:

如圖2-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過以下計算:由題意,∠B=30°,∠C=90°,c=2b,ab,得a2b2=(b)2b2=2b2b·c.即a2b2 bc

于是,小明猜測:對于任意的ΔABC,當∠A=2∠B時,關系式a2b2bc都成立.

(1)如圖2-2,請你用以上小明的方法,對等腰直角三角形進行驗證,判斷小明的猜測是否正確,并寫出驗證過程;

(2)如圖2-3,你認為小明的猜想是否正確,若認為正確,請你證明;否則,請說明理由;

(3)若一個三角形的三邊長恰為三個連續(xù)偶數(shù),且∠A=2∠B,請直接寫出這個三角形三邊的長,不必說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省無棣縣十校聯(lián)考九年級上學期期中數(shù)學試卷 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

 

查看答案和解析>>

同步練習冊答案