如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在邊OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過(guò)程中,點(diǎn)D到點(diǎn)O的最大距離為

A.       B.        C.        D.
A
如圖,取AB的中點(diǎn)E,連接OE、DE、OD,

∵OD≤OE+DE,
∴當(dāng)O、D、E三點(diǎn)共線(xiàn)時(shí),點(diǎn)D到點(diǎn)O的距離最大,
此時(shí),∵AB=2,BC=1,∴OE=AE=AB=1。
DE=
∴OD的最大值為:。故選A。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖,點(diǎn)A、B、C、D在同一條直線(xiàn)上,BE∥DF,∠A=∠F,AB=FD.求證:AE=FC.
(2)如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=,求腰AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形紙片ABCD的邊長(zhǎng)為8,將其沿EF折疊,則圖中①②③④四個(gè)三角形的周長(zhǎng)之和為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面上有一半徑為1 cm的圓定點(diǎn)A,OA="4" cm.以點(diǎn)A為旋轉(zhuǎn)中心,使圓O分別順時(shí)針旋轉(zhuǎn)90°,逆時(shí)針旋轉(zhuǎn)60°,得到圓B和圓C,作出這兩個(gè)圓.
(1)試問(wèn)圓B或圓C的圓心與圓O的圓心O的距離是多少?
(2)試問(wèn)圓B和圓C的圓心的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


【問(wèn)題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿(mǎn)足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類(lèi),可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)       ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)
(4)∠B還要滿(mǎn)足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若       ,則△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若一個(gè)多邊形的每一個(gè)外角都是40°,則這個(gè)多邊形是(   )
A.六邊形B.八邊形 C.九邊形 D.十邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于點(diǎn)E,若AD=2,BC=5,則邊CD的長(zhǎng)是
A.B.C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列長(zhǎng)度的三條線(xiàn)段,能組成等腰三角形的是(   )
A.1,1,2B.2,2,5C.3,3,5D.3,4,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到△BCD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案