【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

(1)圖中A→C( , ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;

(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?

【答案】(1)3;4;2;0;D;;(2)見解析;;應(yīng)記為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線BD與直線BD相交得到∠1, 直線AF與直線CE相交得到∠2,點A,B,C與點D,E,F分別在同一直線上. 從①∠1=2 ,②∠C=D,③∠A=F三個條件中,選出兩個作為已知條件,另一個作為結(jié)論組成一個問題.

(如: .從①bab 兩個條件中,選出一個作為已知條件,另一個作為結(jié)論可以提出兩個問題:已知ab,求證:ab和已知ab,求證:ab

1)你能提出幾個問題?并把你的問題寫出來.

2)從你提出的問題中,任選一個并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知小敏家距學(xué)校5km,小飛家距小敏家3km.若小飛家距學(xué)校距離為xkm,則x滿足(

A.x2B.2≤x≤8C.2≤x≤5D.2x8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:
(1)橋拱半徑
(2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是(

A.∣a∣=∣b∣,則a=bB.a=b,則∣a∣=∣b∣

C.沒有最小的有理數(shù)D.相反數(shù)等于它本身的數(shù)只有0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a-1與-2互為相反數(shù),則 a =_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個角的兩邊分別垂直于另一個角的兩邊,且這兩個角的差是30°,則這兩個角的度數(shù)分別是___________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場第1次用39萬元購進A、B兩種商品,銷售完后獲得利潤6萬元,它們的進價和售價如下表:(總利潤=單件利潤×銷售量)

商品

價格

A

B

進價(元/件)

1200

1000

售價(元/件)

1350

1200

(1)該商場第1次購進A、B兩種商品各多少件?

(2)商場第2次以原價購進A、B兩種商品,購進A商品的件數(shù)不變,而購進B商品的件數(shù)是第1次的2倍,A商品按原價銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動獲得利潤等于54000元,則B種商品是打幾折銷售的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

已知:如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”,試解答下列問題:

問題一在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系   ;

問題二:在圖2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N,試求P的度數(shù);

問題三:在圖3中,已知AP、CP分別平分∠BAM、∠BCD,請問P與∠B、∠D之間存在著怎樣的數(shù)量關(guān)系?并說明理由.

問題四:在圖4中,已知AP的反向延長線平分∠EAB,CP平分∠DCF,請直接寫出∠P與∠B、∠D之間的數(shù)量關(guān)系

查看答案和解析>>

同步練習(xí)冊答案