【題目】如圖,在菱形ABCD中,AB=4,取CD中點O,以O為圓心OD為半徑作圓交AD于E,交BC的延長線交于點F,
(1)若cos∠AEB= ,則菱形ABCD的面積為;
(2)當BE與⊙O相切時,AE的長為 .
【答案】
(1)8
(2)6﹣2
【解析】解:(1.)作BG⊥AD于G,連接CE,
∵四邊形ABCD是菱形∴AB=AD=BC=CD=4,AD∥BC,∵CD是直徑,∴∠CED=90°,∴CE⊥AD,∴BG∥CE,∴四邊形BCEG是矩形,∴GE=BC=4,∵cos∠AEB= ,∴ = ,∴BE= ×4=6,∴BG= = =2 ,∴菱形ABCD的面積=ADBG=4×2 =8 ;
所以答案是8 ;
(2.)連接OE,∵BE與⊙O相切,∴FE⊥BE,∴∠BEG=∠CEO,∵OE=OC,∴∠DCE=∠CEO,∴∠ECD=∠GEB,∴ = ,∵GE=AD,∴AG=ED,設BG=CE=a,∴ = ,∴16﹣a2=4AE,∴AG2=4AE,即(4﹣AE)2=4AE,∴AE2﹣12AE+16=0,解得AE=6﹣2 或AE=6+2 (不合題意,舍去),所以答案是6﹣2 .
【考點精析】利用菱形的性質和切線的性質定理對題目進行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】某中學計劃購買A型和B型課桌凳共200套. 經招標,購買一套A型課桌凳比購買一套B型課桌凳少用40元,且購買4套A型和5套B型課桌凳共需1820元.(1)求購買一套A型課桌凳和一套B型課桌凳各需多少元?
(2)、學校根據實際情況,要求購買這兩種課桌凳總費用不能超過40880元,并且購買A型課桌凳的數量不能超過B型課桌凳數量的,求該校本次購買A型和B型課桌凳共有幾種方案?哪種方案的總費用最低?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A,B(點A,B在原點O兩側),與y軸相交于點C,且點A,C在一次函數y2= x+n的圖象上,線段AB長為16,線段OC長為8,當y1隨著x的增大而減小時,求自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在燒開水時,水溫達到100℃就會沸騰,下表是某同學做“觀察水的沸騰”實驗時記錄的數據:
(1)上表反映了哪兩個量之間的關系?哪個是自變量?哪個是因變量?
(2)水的溫度是如何隨著時間的變化而變化的?
(3)時間推移2分鐘,水的溫度如何變化?
(4)時間為8分鐘時,水的溫度為多少?你能得出時間為9分鐘時,水的溫度嗎?
(5)根據表格,你認為時間為16分鐘和18分鐘時水的溫度分別為多少?
(6)為了節(jié)約能源,你認為應在什么時間停止燒水?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,E為AC的中點,AD平分∠BAC,BA:CA=2:3,AD與BE相交于點O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點O.
(1)作出△ABC關于直線m的對稱△DEF;
(2)作出△DEF關于直線n的對稱△PQR;
(3)△PQR還可以由△ABC經過一次怎樣的變換得到.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學習了二次根式的相關運算后,我們發(fā)現(xiàn)一些含有根號的式子可以表示成另一個式子的平方,如:
3+2=2+2+1=()2+2+1=(+1)2;
5+2=2+2+3=()2+2××+()2=(+)2
(1)請仿照上面式子的變化過程,把下列各式化成另一個式子的平方的形式:
①4+2;②6+4
(2)若a+4=(m+n)2,且a,m,n都是正整數,試求a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com