【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.
(1)發(fā)現(xiàn):如圖1,當點E在AB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MN與EC的位置關系是 ,MN與EC的數(shù)量關系是 .
(2)探究:若把(1)小題中的△AED繞點A順時針旋轉(zhuǎn)45°得到的圖2,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關系和數(shù)量關系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
(3)若把(1)小題中的△AED繞點A逆時針旋轉(zhuǎn)45°得到的圖3,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關系和數(shù)量關系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
【答案】(1)MN⊥EC,MN=EC;(2)成立,理由見解析;(3)成立,理由見解析
【解析】
試題分析:(1)根據(jù)中位線定理,結(jié)合等腰直角三角形性質(zhì)即可直接得出結(jié)論;
(2)連接EM并延長交BC于F,證明△EDM≌△FBM,運用線段的等量代換即可求解;
(3)延長ED交BC于點F,連接AF、MF,結(jié)合矩形的性質(zhì)和等腰直角三角形性質(zhì),合理運用角的等量代換即可求解.
解:(1)MN⊥EC,MN=EC;
由等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,
可知,AE=BE=EC,DE⊥AB,
∵點M、N分別是DB、EC的中點,
∴MN∥AB,且MN=BE,
∴MN⊥EC,MN=EC;
(2)如圖2
連接EM并延長交BC于F,
∵∠AED=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠AFM,∠EDM=∠MBF,
又BM=MD,
在△EDM和△FBM中,
,
∴△EDM≌△FBM,
∴BF=DE=AE,EM=FM,
∴MN=FC=(BC﹣BF)=(AC﹣AF)=EC,
且MN⊥EC;
(3)如圖3
延長ED交BC于點F,連接AF、MF,則AF為矩形ACFE對角線,所以必經(jīng)過EC的中點N且AN=NF=EN=NC.
在Rt△BDF中,M是BD的中點,∠B=45°,
∴FD=FB,
∴FM⊥AB,
∴MN=NA=NF=NC,
即MN=EC,
∴∠NAM=∠AMN,∠NAC=∠NCA,
∴∠MNF=∠NAM+∠AMN=2∠NAM,∠FNC=∠NAC+∠NCA=2∠NAC,
∴∠MNC=∠MNF+∠FNC=2∠NAM+2∠NAC=2(∠NAM+∠NAC)=2∠DAC=90°,
∴∠MNC=90°,
即MN⊥FC且MN=EC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,n+1個邊長為2的等邊三角形有一條邊在同一直線上,設△B2D1C1的面積為S1 , △B3D2C2的面積為S2 , …,△Bn+1DnCn的面積為Sn , 則Sn=(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,A(﹣4,0),B(0,2),連結(jié)AB并延長到C,連結(jié)CO,若△COB∽△CAO,則點C的坐標為( )
A.(1, )
B.( , )
C.( ,2 )
D.( ,2 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知ΔABC的三邊長為a、b、c,下列條件能夠說明ΔABC是直角三角形的是( )
A. a:b:c=5:12:15 B. 3a=4b=5c C. a:b:c=1:2: D. a=b=c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,BC=3AB,A,B兩點的坐標分別是(﹣1,0),(0,2),C,D兩點在反比例函數(shù)y= (x<0)的圖象上,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點
(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;
(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可)
(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn)
求證:①E、F是線段BD的勾股分割點;
②△AMN的面積是△AEF面積的兩倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是( 。
A.圖象關于直線x=1對稱
B.函數(shù)y=ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c=0(a≠0)的兩個根
D.當x<1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為A(0,3),B(﹣3,5),C(﹣4,1).
①把△ABC向右平移2個單位得△A1B1C1 , 請畫出△A1B1C1 , 并寫出點A1的坐標;
②把△ABC繞原點O旋轉(zhuǎn)180°得到△A2B2C2 , 請畫出△A2B2C2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com