【題目】(背景知識(shí))數(shù)軸上兩點(diǎn)表示的數(shù)分別為,則兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問(wèn)題情境)已知數(shù)軸上有兩點(diǎn),點(diǎn)表示的數(shù)分別為和40,點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)運(yùn)動(dòng)開(kāi)始前,兩點(diǎn)之間的距離為___________,線段的中點(diǎn)所表示的數(shù)為__________;
(2)它們按上述方式運(yùn)動(dòng),兩點(diǎn)經(jīng)過(guò)多少秒會(huì)相遇?相遇點(diǎn)所表示的數(shù)是多少?
(3)當(dāng)為多少秒時(shí),線段的中點(diǎn)表示的數(shù)為8?
(情景擴(kuò)展)已知數(shù)軸上有兩點(diǎn),點(diǎn)表示的數(shù)分別為和40,若在點(diǎn)之間有一點(diǎn),點(diǎn)所表示的數(shù)為5,點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒5個(gè)單位長(zhǎng)度和2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).
(4)請(qǐng)問(wèn):的值是否隨著運(yùn)動(dòng)時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
【答案】(1)60,10;(2)4;(3)當(dāng)為4秒時(shí),線段的中點(diǎn)表示的數(shù)為8;(4)不改變,10
【解析】
(1)根據(jù)題中所給公式計(jì)算即可;
(2)根據(jù)題意得出關(guān)于t的一元一次方程,求得t值,則相遇點(diǎn)所表示的數(shù)也可求得;
(3)根據(jù)線段的中點(diǎn)公式,列出關(guān)于t的一元一次方程,求得t即可;
(4)分別用含t的式子表示出BC和AC,求差即可得答案.
解:(1)運(yùn)動(dòng)開(kāi)始前,A、B兩點(diǎn)之間的距離為40(20)=60,線段AB的中點(diǎn)M所表示的數(shù)為=10
故答案為:60,10;
(2)由題意,得,解得.
所以兩點(diǎn)經(jīng)過(guò)12秒會(huì)相遇.
則
所以相遇點(diǎn)所表示的數(shù)4;
(3)根據(jù)題意,得
解得
所以,當(dāng)為4秒時(shí),線段的中點(diǎn)表示的數(shù)為8;
(4)不改變
,
故的值不會(huì)隨著時(shí)間的變化而改變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:用若干個(gè)邊長(zhǎng)為1的小等邊三角形拼成層的大等邊三角形,共需要多少個(gè)小等邊三角形?共有線段多少條?
圖①圖②圖③
問(wèn)題探究:
如圖①,是一個(gè)邊長(zhǎng)為1的等邊三角形,現(xiàn)在用若干個(gè)這樣的等邊三角形再拼成更大的等邊三角形.
(1)用圖①拼成兩層的大等邊三角形,如圖②,從上往下,第一層有1個(gè),第二層有2個(gè),共用了個(gè)圖①的等邊三角形,則有長(zhǎng)度為1的線段條;還有邊長(zhǎng)為2的等邊三角形1個(gè),則有長(zhǎng)度為2的線段條;所以,共有線段條.
(2)用圖①拼成三層的大等邊三角形,如圖③,從上往下,第一層有1個(gè),第二層有2個(gè),第三層有3個(gè),共用了個(gè)圖①的等邊三角形,則有長(zhǎng)度為1的線段條;還有邊長(zhǎng)為2的等邊三角形個(gè),則有長(zhǎng)度為2的線段條;還有邊長(zhǎng)為3的等邊三角形1個(gè),則有長(zhǎng)度為3的線段條;所以,共有線段條.……
問(wèn)題解決:
(3)用圖①拼成四層的大等邊三角形,共需要多少個(gè)圖①三角形?共有線段多少條?請(qǐng)?jiān)诜娇蛑挟?huà)出一個(gè)示意圖,并寫(xiě)出探究過(guò)程;
(4)用圖①拼成20層的大等邊三角形,共用了 個(gè)圖①三角形,共有線段 條;
(5)用圖①拼成層的大等邊三角形,共用了 個(gè)圖①三角形,共有線段 條,其中邊長(zhǎng)為2的等邊三角形共有 個(gè).
(6)拓展提升:如果用邊長(zhǎng)為3的小等邊三角形拼成邊長(zhǎng)為30的大等邊三角形,共需要 個(gè)小等邊三角形,共有線段 條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α<∠β,則下列表示∠α的余角的式子中:①90°﹣∠α;②∠β﹣90°;③(∠α+∠β);④(∠β﹣∠α)其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知線段,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),點(diǎn)分別是和的中點(diǎn).
(1)若點(diǎn)恰好是的中點(diǎn),則_______;若,則_________;
(2)隨著點(diǎn)位置的改版,的長(zhǎng)是否會(huì)改變?如果改變,請(qǐng)說(shuō)明原因;如果不變,請(qǐng)求出的長(zhǎng);
(3)知識(shí)遷移:如圖②,已知,過(guò)角的內(nèi)部任意一點(diǎn)畫(huà)射線,若分別平分和,試說(shuō)明的度數(shù)與射線的位置無(wú)關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,為坐標(biāo)原點(diǎn),四邊形為矩形,,點(diǎn)是的中點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),當(dāng)是腰長(zhǎng)為5的等腰三角形,則點(diǎn)的坐標(biāo)為_________________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角墻角AOB(OA⊥OB,且OA、OB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2.
(1)求地面矩形AOBC的長(zhǎng);
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價(jià)分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將自然數(shù)按照下表進(jìn)行排列:
用表示第行第列數(shù),例如表示第4行第3列數(shù)是29.)
(1)已知,_________,___________;
(2)將圖中5個(gè)陰影方格看成一個(gè)整體并在表格內(nèi)平移,所覆蓋的5個(gè)自然數(shù)之和能否為2021?若能,求出這個(gè)整體中左上角最小的數(shù);若不能,請(qǐng)說(shuō)明理由;
(3)用含的代數(shù)式表示_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)學(xué)生在農(nóng)場(chǎng)進(jìn)行社會(huì)實(shí)踐勞動(dòng)時(shí),采摘了黃瓜和茄子共千克,了解到采摘的這部分黃瓜和茄子的種植成本共元,還了解到如下信息:黃瓜的種植成本是元/千克,售價(jià)是元/千克;茄子的種植成本是元/千克,售價(jià)是元/千克.
(1)求采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子全部賣出可賺多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com