與拋物線y=x2-2x-4關(guān)于x軸對稱的圖象表示為( )
A.y=-x2+2x+4
B.y=-x2+2x-4
C.y=x2-2x+6
D.y=x2-2x-4
【答案】分析:畫出圖形后可根據(jù)開口方向決定二次項系數(shù)的符號,開口度是二次項系數(shù)的絕對值;對稱軸與開口方向可判斷出一次項的符號,與y軸的交點為拋物線的常數(shù)項進行解答.
解答:解:關(guān)于x軸對稱的兩個函數(shù)解析式的開口方向改變,開口度不變,二次項的系數(shù)互為相反數(shù);對稱軸不變,那么一次項的系數(shù)互為相反數(shù);與y軸的交點互為相反數(shù),那么常數(shù)項互為相反數(shù),
故選A.
點評:根據(jù)畫圖可得到拋物線關(guān)于x軸對稱的特點:二次項系數(shù),一次項系數(shù),常數(shù)項均互為相反數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一直線y1=x+b與拋物線y2=x2+c的交點為A(3,5)和B.
(1)求出b、c和點B的坐標(biāo);
(2)畫出草圖,根據(jù)圖象同答:當(dāng)x在什么范圍時y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-x+c.
(1)若點A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若點D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函數(shù)y=x2-x+c的圖象上,且D、E兩點關(guān)于坐標(biāo)原點成中心對稱,連接OP.當(dāng)2
2
≤OP≤2+
2
時,試判斷直線DE與拋物線y=x2-x+c+
3
8
的交點個數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-x+c.
(1)若點A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若D(2,y1)、E(x2,2)兩點關(guān)于坐標(biāo)原點成中心對稱,試判斷直線DE與拋物線y=x2-x+c+
38
的交點個數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、CD是半徑為1的⊙P兩條直徑,且∠CPB=120°,⊙M與PC、PB及弧CQB都相切,O、精英家教網(wǎng)Q分別為PB、弧CQB上的切點.
(1)試求⊙M的半徑r;
(2)以AB為x軸,OM為y軸(分別以O(shè)B、OM為正方向)建立直角坐標(biāo)系,
①設(shè)直線y=kx+m過點M、Q,求k,m;?????????????????
②設(shè)函數(shù)y=x2+bx+c的圖象經(jīng)過點Q、O,求此函數(shù)解析式;
③當(dāng)y=x2+bx+c<0時,求x的取值范圍;
④若直線y=kx+m與拋物線y=x2+bx+c的另一個交點為E,求線段EQ的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(k2-3k-4)x+2k與x軸從左至右交于A、B兩點,且這兩點關(guān)于原點對稱.
(1)求k的值;
(2)在(1)的條件下,若反比例函數(shù)y=
1
x
的圖象與拋物線y=x2+(k2-3k-4)x+2k從左至右交于Q、R、S三點,且Q的坐標(biāo)(-1,-1),R的坐標(biāo)(
1-
5
2
,-
1+
5
2
),S的坐標(biāo)(
1+
5
2
,-
1+
5
2
),求四邊形AQBS的面積;
(3)在(1)、(2)條件下,在軸下方拋物線y=x2+(k2-3k-4)x+2k上是否存在點P,使S△PAB=2S△RAB?若存在,求出P點坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案