(2013•潛江模擬)已知等腰△ABC中,AD⊥BC于點(diǎn)D,且AD=
1
2
BC,則△ABC底角的度數(shù)為( 。
分析:作出圖形,分①點(diǎn)A是頂點(diǎn)時(shí),根據(jù)等腰三角形三線合一的性質(zhì)可得BD=CD,從而得到AD=BD=CD,再利用等邊對(duì)等角的性質(zhì)可得∠B=∠BAD,然后利用直角三角形兩銳角互余求解即可;
②點(diǎn)A是底角頂點(diǎn)時(shí),再分AD在△ABC外部時(shí),根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出∠ACD=30°,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求解即可得到底角是15°,AD在△ABC內(nèi)部時(shí),根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出∠C=30°,然后再根據(jù)等腰三角形兩底角相等求解即可.
解答:解:①如圖1,點(diǎn)A是頂點(diǎn)時(shí),∵AB=AC,AD⊥BC,
∴BD=CD,
∵AD=
1
2
BC,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
1
2
(180°-90°)=45°;
②如圖2,點(diǎn)A是底角頂點(diǎn),且AD在△ABC外部時(shí),
∵AD=
1
2
BC,AC=BC,
∴AD=
1
2
AC,
∴∠ACD=30°,
∴∠BAC=∠ABC=
1
2
×30°=15°;
③如圖3,點(diǎn)A是底角頂點(diǎn),且AD在△ABC內(nèi)部時(shí),
∵AD=
1
2
BC,AC=BC,
∴AD=
1
2
AC,
∴∠C=30°,
∴∠BAC=∠ABC=
1
2
(180°-30°)=75°;
綜上所述,△ABC底角的度數(shù)為45°或15°或75°.
故選C.
點(diǎn)評(píng):本題考查了30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),等腰三角形的兩底角相等的性質(zhì),以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),難點(diǎn)在于要分情況討論求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•潛江模擬)已知反比例函數(shù)y=
1
x
的圖象,當(dāng)x取1,2,3,…,n時(shí),對(duì)應(yīng)在反比例圖象上的點(diǎn)分別為M1,M2,M3…,Mn,則SP1M1M2+SP2M2M3+…+SPn-1Mn-1MN=
n-1
2n
n-1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案