如圖,△ABC中,DE⊥AB,DF⊥AC,AD平分∠BAC,則下列結(jié)論中正確有個.
(1)DE=DF;(2)AD⊥BC;(3)AE=AF;(4)∠EDA=∠FDA;(5)AB=AC;(6)∠B=∠C;(7)BD=CD.


  1. A.
    3
  2. B.
    4
  3. C.
    6
  4. D.
    7
A
分析:本題通過三角形的全等和反證法來證,逐個證明從而證明得到結(jié)論.
解答:∵在△ADE和△ADF中AD為公共邊,
又∵DE⊥AB,DF⊥AC,AD平分∠BAC,
∴△AED≌△ADF,
∴DE=DF,AE=AF,∠EDA=∠FDA,
故(1)(3)(4)正確.
要想證得(2)(5)(6)(7)那就要求△ABC為等腰三角形,但是已知條件沒有,從已知條件中也不能證得.
∴只有三個答案是正確的.
故選A.
點評:本題在于考查三角形的全等,以及用反證法很容易證得.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案