已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸、y軸的交點(diǎn)分別為A、B,OB=3,,將∠OBA對折,使點(diǎn)O的對應(yīng)點(diǎn)H恰好落在直線AB上,折痕交x軸于點(diǎn)C,
(1)求過A、B、C三點(diǎn)的拋物線解析式;
(2)若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四
邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)若點(diǎn)Q是拋物線上一個(gè)動(dòng)點(diǎn),使得以A、B、Q為頂點(diǎn)并且以AB為直角邊的直角三角形,直角寫出Q點(diǎn)坐標(biāo)。
(1)∵在Rt△BOA中,OB=3,,
∴OA=4,AB=5,
∴A(4,0),B(0,3)
設(shè)C(),連結(jié)CH,如圖,由對稱性知,CH=OC=,BH=BO=3,∠BHC=∠BOC=90°,
∴AH= AB-BH=2,AC=,
∴在Rt△CHA中,由CH+AH=AC,即得 ,∴C()
設(shè)過A、B、C三點(diǎn)的拋物線的解析式為
將x=0,y=3代入拋物線的解析式,得 ,
∴,
即過A、B、C三點(diǎn)的拋物線的解析式為 ;---4分
(2),
∴拋物線的對稱軸為直線,頂點(diǎn)D的坐標(biāo)為(),
由B(0,3),C()可求得直線BC的解析式:,
假設(shè)存在符合題意的點(diǎn)P,其坐標(biāo)為(),
要使得四邊形ODAP為平行四邊形,只能OP∥AD,且OP=AD,
如圖,作OP∥AD交直線BC于點(diǎn)P,連結(jié)AP,作PM⊥x軸于點(diǎn)M,
記拋物線的對稱軸與x軸的交點(diǎn)為G,
∵OP∥AD,
∴∠POM=∠DAG,
又∵∠PMO=∠DGA=90°,OP=AD,
∴△OPM≌△ADG(AAS)
∴OM=AG,PM=DG,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
2 |
16 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).
(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com