(2012•道外區(qū)一模)如圖,點E在正方形ABCD的邊上,連接BE,將正方形折疊,使點B與點E重合,折痕GH交BC邊于點G,交AD邊于點H,若tan∠EBC=
13
,AD+DE=15,則線段AH的長為
2
2
分析:由tan∠EBC=
1
3
,可得BC=3CE,又由四邊形ABCD是正方形與AD+DE=15,即可求得CE,DE,BC的長,然后由勾股定理與折疊的性質(zhì),求得CG與GE的長,又由同角的余角相等與對頂角相等,求得∠A′FH=∠DFE=∠CEG,然后由三角函數(shù),求得EF,A′F的長,繼而可求得答案.
解答:解:∵四邊形ABCD是正方形,
∴∠C=∠D=∠A=90°,BC=CD=AD,
∵在Rt△BCE中,tan∠EBC=
1
3
,
CE
BC
=
1
3
,
∴BC=3CE
∴DE=CD-CE=BC-CE=2CE,
∵AD+DE=15,
∴5CE=15,
∴CE=3,
即BC=AD=CD=9,DE=6,
由折疊的性質(zhì)可得:A′H=AH,∠A′=∠A=90°,BG=GE,A′E=AB,
設CG=x,則GE=BG=BC-CG=9-x,
在Rt△CEG中,GE2=CG2+CE2,
即(9-x)2=x2+9,
解得:x=4,
∴CG=4,GE=5,
∵∠FEG=∠ABG=90°,
∴∠DFE+∠DEF=∠DEF+∠CEG=90°,
∴∠A′FH=∠DFE=∠CEG,
∴EF=
DE
sin∠DFE
=
DE
sin∠CEG
=
6
4
5
=
15
2
,
∴A′F=A′E-EF=9-
15
2
=
3
2
,
∴A′H=A′F•tan∠A′FH=A′F•tan∠CEG=
3
2
×
4
3
=2,
∴AH=A′H=2.
故答案為:2.
點評:此題考查了折疊的性質(zhì)、正方形的性質(zhì)、勾股定理以及三角函數(shù)等知識.此題難度較大,注意數(shù)形結(jié)合思想與方程思想的應用,注意掌握折疊前后圖形的對應關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•道外區(qū)一模)如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=
32°
32°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•道外區(qū)一模)樂樂家冰箱冷凍室的溫度為-15℃,調(diào)高3℃后的溫度為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•道外區(qū)一模)鵬程電腦公司今年2月份開始銷售一批計算機.2月份每臺按所標價格銷售,售出40臺.3月份公司搞降價促銷活動,每臺降價400元銷售,這樣3月比2月多售出l0臺,銷售款比2月銷售款多40000元.
(1)求這批計算機2月份每臺標價是多少元?
(2)進入4月份,公司又打折銷售,按2月份所標價格的九折銷售,將這批計算機全部售出,銷售款總量超過568600元.這批計算機最少有多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•道外區(qū)一模)如圖,在平面直角坐標系中,點0是坐標原點,直線y=x+4分別交x軸、y軸于點A、點B,直線y=-2x+b分別交x軸、y軸于點C、點D,且0C=20B.設直線AB、CD相交于點E.
(1)求直線CD的解析式;
(2)動點P從點B出發(fā)沿線段BC以每秒鐘
5
個單位的速度向點C勻速移動,同時動點Q從點D出發(fā)沿線段DC以每秒鐘2
5
個單位的速度向點C勻速移動,當P到達點C時,點Q同時停止移動.設P點移動的時間為t秒,PQ的長為d(d≠0),求d與t之間的函數(shù)關系式,
并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,在P、Q.的運動過程中,設直線PQ、直線AB相交于點N.當t為何值時,
NQ
PQ
=
2
3
?并判斷此時以點Q為圓心,以3為半徑的⊙Q與直線AB位置關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•道外區(qū)一模)已知:點P為正方形ABCD內(nèi)部一點,且∠BPC=90°,過點P的直線分別交邊AB、邊CD于點E、點F.
(1)如圖1,當PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關系為
S△PBE+S△PCF=S△BPC
S△PBE+S△PCF=S△BPC
;
(2)如圖2,當PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG;
(3)在(2)的條件下,Q為AD邊上一點,且∠PQF=90°,連接BD,BD交QF于點N,若S△bpc=80,BE=6.求線段DN的長.

查看答案和解析>>

同步練習冊答案