在直角坐標系中,⊙A的圓心坐標為(1,-2),半徑為1.
(1)圓心A與坐標原點O之間的距離OA=______
【答案】分析:(1)利用勾股定理列式求解即可;
(2)先求出點A關于原點中心對稱的點A′,然后以A′為圓心,以1為半徑作圓即可.
解答:解:(1)OA==;

(2)點A關于原點中心對稱的點的坐標為A′(-1,2),
如圖,⊙A′即為所求作的圓.
點評:本題考查了利用旋轉變換作圖,以及兩點間的距離,作出平面直角坐標系并找出圓心的位置是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在直角坐標系中有三點A(0,1),B(1,3),C(2,6);已知直線y=ax+b上橫坐標為0、1、2的點分別為D、E、F.試求a,b的值使得AD2+BE2+CF2達到最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,某三角形三個頂點的橫坐標不變,縱坐標都增加2個單位,則所得三角形與原三角形相比(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,將坐標為(5,6),(1,2),(3,2),(3,0),(7,0),(7,2),(9,2),(5,6)的點用線段依此連接起來形成一個圖案.
(1)縱坐標保持不變,橫坐標分別減去3呢,與原圖形相比,所得圖形有什么變化?
(2)橫坐標保持不變,縱坐標分別乘以-1,與原圖形相比,所得圖形有什么變化?
(3)橫坐標加上2,縱坐標減去3呢,與原圖形相比,所得圖形有什么變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,O為坐標原點,△ABO是正三角形,若點B的坐標是(-2,0),則點A的坐標是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標;
(2)求出S△ABC;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化后的圖形,并判斷線段AB和線段A′B′的關系.

查看答案和解析>>

同步練習冊答案