完成下列各題:
(1)如圖1,點(diǎn)A、B、C、D在同一條直線上,BE∥DF,∠A=∠F,AB=FD.求證:AE=FC.
(2)如圖2,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=.求腰AB的長(zhǎng).

【答案】分析:(1)根據(jù)BE∥DF,可得∠ABE=∠D,再利用ASA求證△ABC和△FDC全等即可;
(2)過D作DE⊥BC于E,因?yàn)锳D∥BC,AB,DE都和BC垂直,那么四邊形ADEB就是個(gè)矩形.AD=BE,EC=BC-AD,在直角三角形CDE中,有了CE的值,又知道tanC的值,求出DE就不難了.
解答:(1)證明:∵BE∥DF,
∴∠ABE=∠D,
在△ABE和△FDC中,
,
∴△ABE≌△FDC(ASA),
∴AE=FC;

(2)解:如圖2,作DE⊥BC于E,
∵AD∥BC,∠B=90°,
∴∠A=90°.又∠DEB=90°,
∴四邊形ABED是矩形.
∴BE=AD=2,∴EC=BC-BE=3.     
在Rt△DEC中,DE=EC•tanC==4.
點(diǎn)評(píng):(1)此題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,此題的關(guān)鍵是利用平行線的性質(zhì)求證△ABC和△FDC全等;
(2)本題考查了直角梯形的性質(zhì),解題的關(guān)鍵是構(gòu)建直角三角形將已知和所求的條件都轉(zhuǎn)化到直角三角形中進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各題:
(1)作△ABC的高AD;
(2)作△ABC的角平分線AE;
(3)根據(jù)你所畫的圖形求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)下圖顯示的是今年2月25日《太原日?qǐng)?bào)》刊登的太原市2002年至2004年財(cái)政總收入完成情況,圖中數(shù)據(jù)精確到1億元,根據(jù)圖中數(shù)據(jù)完成下列各題:
(1)2003年比2002年財(cái)政總收入增加了
 
億元;
(2)2004年財(cái)政總收入的年增長(zhǎng)率是
 
;(精確到1%)
(3)假如2005年財(cái)政總收入的年增長(zhǎng)率不低于2004年財(cái)政總收入的年增長(zhǎng)率,預(yù)計(jì)2005年財(cái)政總收入至少達(dá)到
 
億元.(精確到1億元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將分別標(biāo)有數(shù)字1、2、3的三張卡片洗勻后,背面朝上放在桌面上.請(qǐng)完成下列各題:
(1)隨機(jī)地抽取一張,求P(抽到奇數(shù));
(2)隨機(jī)地抽取一張作為十位上的數(shù)字,不放回再抽取一張作為個(gè)位上的數(shù)字,寫出所有可能的結(jié)果(如:(1,2)等);
(3)在(2)的條件下,試求恰好是“32”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰寧縣質(zhì)檢)如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)用簽字筆畫AD∥BC(D為格點(diǎn)),連接CD.
(2)線段AB的長(zhǎng)為
5
5
,△ABC的面積為
6
6

(3)若E為BC中點(diǎn),則tan∠CAE的值是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中完成下列各題:
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1
(2)在x軸上畫出點(diǎn)P,使PA+PB的值最。
(3)在x軸上畫出點(diǎn)Q,使QB1+QC的值最。

查看答案和解析>>

同步練習(xí)冊(cè)答案