如圖,AB為⊙O的直徑,AD與⊙O相切于一點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB.

⑴求證:BC為⊙O的切線;
⑵若,AD=2,求線段BC的長.
(1)證明見解析;(2)

試題分析:(1)因為BC經(jīng)過圓的半徑的外端,只要證明AB⊥BC即可.連接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可證明BC為⊙O的切線.
(2)作DF⊥BC于點F,構造Rt△DFC,利用勾股定理解答即可.
試題解析:(1)證明:連接OE、OC.

∵CB=CE,OB=OE,OC=OC,
∴△OBC≌△OEC.
∴∠OBC=∠OEC.
又∵DE與⊙O相切于點E,
∴∠OEC=90°.
∴∠OBC=90°.
∴BC為⊙O的切線.
(2)解:過點D作DF⊥BC于點F,則四邊形ABFD是矩形,BF=AD=2,DF=AB=2
∵AD、DC、BC分別切⊙O于點A、E、B,
∴DA=DE,CE=CB.
設BC為x,則CF=x-2,DC=x+2.
在Rt△DFC中,(x+2)2-(x-2)2=(22,解得x=
∴BC=
考點: 1.切線的判定與性質(zhì);2.勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠A=90°,AB=AC=2,點O是邊BC的中點,半圓O與△ABC相切于點D、E,則陰影部分的面積等于                

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上的一點,DA與⊙O相切于點A,DA=DC=

(1)求證:DC是⊙O的切線;
(2)若∠CAB=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點O (0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC 的正弦值為                

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知⊙的半徑為9cm,射線經(jīng)過點,OP=15 cm,射線與⊙相切于點.動點自P點以cm/s的速度沿射線方向運動,同時動點也自P點以2cm/s的速度沿射線方向運動,則它們從點出發(fā)        s后所在直線與⊙相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,∠C=30°,則∠ABD等于( 。
A.30°B.40°C.50°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一副量角器與一塊含30°銳角的三角板如圖所示放置,三角板的直角頂點C落在量角器的直徑MN上,頂點A,B恰好都落在量角器的圓弧上,且AB∥MN.若AB=8cm,則量角器的直徑MN=         cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的半徑為3厘米,點B為⊙O外一點,OB交⊙O于點A,且AB=OA,動點P從點A出發(fā),以π厘米/秒的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當點P運動的時間為(  )秒時,直線BP與⊙O相切.
A.1 B.5 C.0.5或5.5 D.1或5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△內(nèi)接于,∠=的直徑,,求的長.

查看答案和解析>>

同步練習冊答案