(2010•莆田)如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D在邊AB上運動,DE平分∠CDB交邊BC于點E,EM⊥BD垂足為M,EN⊥CD垂足為N.

(1)當AD=CD時,求證:DE∥AC;
(2)探究:AD為何值時,△BME與△CNE相似?
(3)探究:AD為何值時,四邊形MEND與△BDE的面積相等?
【答案】分析:(1)由相似三角形的判定得出△DEB∽△ACB,從而得出角的關系,再由AD=CD,得出BD與AB的關系,即可求的結論.
(2)此題分兩種情況求解,△BME∽△CNE或△BME∽△ENC,根據(jù)相似三角形的性質(zhì)即可求得;
(3)根據(jù)四邊形的面積求解方法,利用分割法求不規(guī)則四邊形的面積,作輔助線EN⊥BD即可求得.
解答:(1)證明:∵AD=CD
∴∠DAC=∠DCA
∴∠BDC=2∠DAC
∵DE是∠BDC的平分線
∴∠BDC=2∠BDE
∴∠DAC=∠BDE
∴DE∥AC;
(2)解:(I)當△BME∽△CNE時,得∠MBE=∠NCE
∴BD=DC
∵DE平分∠BDC
∴DE⊥BC,BE=EC
又∠ACB=90°
∴DE∥AC
即BD=AB==5
∴AD=5
(II)當△BME∽△ENC時,得∠EBM=∠CEN
∴EN∥BD
∵EN⊥CD
∴BD⊥CD即CD是△ABC斜邊上的高
由三角形面積公式得AB•CD=AC•BC
∴CD=
∴AD=
綜上,當AD=5或時,△BME與△CNE相似;
(3)解:由角平分線性質(zhì)易得S△MDE=S△DEN=DM•ME
∵S四邊形MEND=S△BDE
BD•EM=DM•EM即DM=BD
∴EM是BD的垂直平分線
∴BE=DE,DM=BM,
∴BD=2BM,
∴∠EDB=∠DBE
∵∠EDB=∠CDE
∴∠DBE=∠CDE
∵∠DCE=∠BCD
∴△CDE∽△CBD
①,

∵BC=8,
即CD=
∴cosB=
∴CD=4×=5
由①式得CE=
∴BE=
∴BM=BE•cosB=
∴AD=AB-2BM=10-2×=
點評:此題考查了平行線的判定,還考查了相似三角形的判定與性質(zhì),解題時要注意數(shù)形結合思想的應用,要注意不規(guī)則圖形的面積的求解方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點P,直線PD與矩形對角線AC交于點M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點D和點E(點E在y軸的正半軸上),且△ODE沿DE折疊后點O落在邊AB上O′處.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(10)(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點P,直線PD與矩形對角線AC交于點M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點D和點E(點E在y軸的正半軸上),且△ODE沿DE折疊后點O落在邊AB上O′處.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點P,直線PD與矩形對角線AC交于點M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點D和點E(點E在y軸的正半軸上),且△ODE沿DE折疊后點O落在邊AB上O′處.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點P,直線PD與矩形對角線AC交于點M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點D和點E(點E在y軸的正半軸上),且△ODE沿DE折疊后點O落在邊AB上O′處.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省莆田市中考數(shù)學試卷(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點P,直線PD與矩形對角線AC交于點M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點D和點E(點E在y軸的正半軸上),且△ODE沿DE折疊后點O落在邊AB上O′處.

查看答案和解析>>

同步練習冊答案