作業(yè)寶如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為________.

2
分析:連結(jié)BE,設(shè)⊙O的半徑為R,由OD⊥AB,根據(jù)垂徑定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R-CD=R-2,根據(jù)勾股定理得到(R-2)2+42=R2,解得R=5,則OC=3,由于OC為△ABE的中位線,則BE=2OC=6,再根據(jù)圓周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可計(jì)算出CE.
解答:解:連結(jié)BE,設(shè)⊙O的半徑為R,如圖,
∵OD⊥AB,
∴AC=BC=AB=×8=4,
在Rt△AOC中,OA=R,OC=R-CD=R-2,
∵OC2+AC2=OA2,
∴(R-2)2+42=R2,解得R=5,
∴OC=5-2=3,
∴BE=2OC=6,
∵AE為直徑,
∴∠ABE=90°,
在Rt△BCE中,CE===2
故答案為2
點(diǎn)評(píng):本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.也考查了勾股定理、圓周角定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,⊙O的半徑OD經(jīng)過弦AB(不是直徑)的中點(diǎn)C,過AB的延長(zhǎng)線上一點(diǎn)P作⊙O的切線PE,E為切點(diǎn),PE∥OD;延長(zhǎng)直徑AG交PE于點(diǎn)H;直線DG交OE于點(diǎn)F,交PE于點(diǎn)K.
(1)求證:四邊形OCPE是矩形;
(2)求證:HK=HG;
(3)若EF=2,F(xiàn)O=1,求KE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•舟山)如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•上城區(qū)二模)如圖,⊙O的半徑OD經(jīng)過弦AB(不是直徑)的中點(diǎn)C,OE∥AB交⊙O于點(diǎn)E,PE∥OD,延長(zhǎng)直徑AG,交PE于點(diǎn)H,直線DG交OE于點(diǎn)F,交PE于K.若EF=2,F(xiàn)O=1,則KH的長(zhǎng)度等于
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙0的半徑OD⊥AB,垂足為C,且∠DEB=25°,則∠AOD的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省成都市武侯區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=4, CD=1,則EC的長(zhǎng)為

A.      B.      C.      D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案