【題目】某單位在疫情期間用 3000 元購進 AB 兩種口罩1100 個,購買A種口罩與購買 B 種口罩的費用相同,且A種口罩的單價是 B 種口罩單價的 1.2 倍求 A,B 兩種口罩的單價各是多少元?

【答案】A種口罩單價為3元,B種口罩單價為2.5

【解析】

根據(jù)題意分析可知,本題主要考查的是分式方程的在銷售問題上的應用.B種口罩單價為x,A種口罩單價為1.2x元,根據(jù)數(shù)量=總價÷單價,結合用3000元購進A、B兩種口罩1100,即可得出關于x的分式方程,解之經檢驗后即可得出結論.

B 種口罩單價為x元,則A種口罩單價為1.2x元,根據(jù)題意列方程得

,

解得

經檢驗,x=2.5是原分式方程的解,

1.2x=3,

: A種口罩單價為3元,B種口罩單價為2.5.

故答案為:A種口罩單價為3元,B種口罩單價為2.5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線y=x軸交于AB兩點(點A在點B的左側),與y軸交于點C,拋物線的頂點為點D,過點BBC的垂線,交對稱軸于點E

1)求證:點E與點D關于x軸對稱;

2)點P為第四象限內的拋物線上的一動點,當PAE的面積最大時,在對稱軸上找一點M,在y軸上找一點N,使得OM+MN+NP最小,求此時點M的坐標及OM+MN+NP的最小值;

3)如圖2,平移拋物線,使拋物線的頂點D在射線AD上移動,點D平移后的對應點為D,點A的對應點A,設拋物線的對稱軸與x軸交于點F,將FBC沿BC翻折,使點F落在點F處,在平面內找一點G,若以F、G、D、A為頂點的四邊形為菱形,求平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ADC中,點B是邊DC上的一點,∠DAB=C .若ADC的面積為18cm,求ABC的面積.

【答案】10

【解析】試題分析:根據(jù)相似三角形的判定定理得到ADC∽△BAD,根據(jù)相似三角形的面積比等于相似比的平方即可得到結論.

試題解析:∵∠DAB=C,D=D, ∴△ADC∽△BAD,

,

∵△ADC的面積為18cm2 ,

∴△BDA的面積為8cm2 ,

∴△ABC的面積=ADC的面積﹣BDA的面積=10cm2

型】解答
束】
24

【題目】如圖,在網(wǎng)格圖中的ABCDEF是否成位似圖形?說明理由.如果是,同時指出它們的位似中心.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一股民上星期五買進某公司股票股,每股元,下表為本周內每日該股票的漲跌情況(單位:元)

星期

每股漲跌

星期三收盤時,每股是________元;

本周內每股最高價為________元,每股最低價為________元;

已知該股民買進股票時付了的手續(xù)費,賣出時還需付成交額的手續(xù)費和的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列多項式能直接用完全平方公式進行因式分解的是(

A.x2+2x1B. x2x +C.x2+xy+y2D.9+x23x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:ABC中,ACB=90°CAD=30°,AC=BC=AD,CECD,且CE=CD,連接BD,DEBE,則下列結論:ECA=165°,②BE=BC③ADBE;=1.其中正確的是(

A①②③ B①②④ C①③④ D①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點,則3x1y2-5x2y1的值為 __________.

【答案】-6

【解析】試題分析:∵點Ax1y1),Bx2y2)是雙曲線y上的點,

x1y1x2y2=-3

∵直線ykxk0)與雙曲線y交于點Ax1,y1),Bx2,y2)兩點,

x1=-x2y1=-y2

∴原式=-3x1y15x2y2915=-6

故答案為:6

點睛:本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的對稱性,根據(jù)反比例函數(shù)的圖象關于原點對稱得出x1=-x2,y1=-y2是解答此題的關鍵.

型】填空
束】
15

【題目】A,B兩地相距180km,新修的高速公路開通后,在A,B兩地間行駛的長途客車平均車速提高了 50%,而從A地到B地的時間縮短了 1h .若設原來的平均車速為xkm/h,則根據(jù)題意可列方程為 _____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△BEF都是等邊三角形,點D在BC邊上,點F在AB邊上,且∠EAD=60°,連接ED、CF.

(1)求證:△ABE≌△ACD;

(2)求證:四邊形EFCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好改善河流的水質,治污公司決定購買10臺污水處理設備.現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

240

180

1)求a,b的值;

2)治污公司經預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

同步練習冊答案