精英家教網 > 初中數學 > 題目詳情
如圖,已知正方形ABCD的邊長為1,以頂點A、B為圓心,1為半徑的兩弧交于點E,以頂點C、D為圓心,1為半徑的兩弧交于點F,則EF的長為   
【答案】分析:連接AE,BE,DF,CF,可證明三角形AEB是等邊三角形,利用等邊三角形的性質和勾股定理即可求出邊AB上的高線,同理可求出CD邊上的高線,進而求出EF的長.
解答:解:連接AE,BE,DF,CF.
∵以頂點A、B為圓心,1為半徑的兩弧交于點E,AB=1,
∴AB=AE=BE,
∴△AEB是等邊三角形,
∴邊AB上的高線為EN=,
延長EF交AB于N,并反向延長EF交DC于M,則E、F、M,N共線,
則EM=1-EN=1-
∴NF=EM=1-,
∴EF=1-EM-NF=-1.
故答案為-1.
點評:本題考查了正方形的性質和等邊三角形的判定和性質以及勾股定理的運用,解題的關鍵是添加輔助線構造等邊三角形,利用等邊三角形的性質解答即可.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉得到△CBF,點F恰好在AB邊上.
(1)請畫出旋轉中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當CE=
a
a
時,S△FGE=S△FBE;當CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
(1)試說明OE=OF;
(2)當AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習冊答案