【題目】如圖1,△ABC中,BE平分∠ABC交AC邊于點(diǎn)E,過點(diǎn)E作DE∥BC交AB于點(diǎn)D,
(1)求證:△BDE為等腰三角形;
(2)若點(diǎn)D為AB中點(diǎn),AB=6,求線段BC的長;
(3)在圖2條件下,若∠BAC=60°,動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位的速度沿射線BE運(yùn)動,請直接寫出圖3當(dāng)△ABP為等腰三角形時t的值.
【答案】(1)詳見解析;(2)BC=6;(3)當(dāng)△ABP為等腰三角形時t的值為,6,.
【解析】
(1)由角平分線和平行線的性質(zhì)可得到∠BDE=∠DEB,可證得結(jié)論;
(2)由條件可知BD=DE=DA=3,且DE為△ABC的中位線,可求得BC長;
(3)分BP=AP、BP=AB、AP=AB三種情況分別討論求t的值即可.
(1)證明:∵BE平分∠ABC,
∴∠ABE=∠EBC,
∵DE∥BC,
∴∠DEB=∠EBC=∠ABE,
∴BD=ED,
∴△DBE為等腰三角形;
(2)∵點(diǎn)D為AB中點(diǎn)
∴AD=BD=ED=AB=3,
∵DE∥BC,
∴E為AC中點(diǎn),
∴DE為△ABC的中位線,
∴BC=2DE=6;
(3)在(2)的條件下可知DE=DA,且∠BAC=60°,∴△ADE為等邊三角形,
∵BC=2DE=AB,
∴△ABC為等邊三角形,
當(dāng)BP=AP時,過點(diǎn)P作PE⊥AB,交AB于點(diǎn)E,則BF=AB=6,
在Rt△PBF中,∠PBF=∠ABC=30°,
∴BP=,即t=,
當(dāng)BP=BA時,此時BP=6,即t=6,
當(dāng)AB=AP時,此時,BP=2BE=,
即t=,
綜上可知當(dāng)△ABP為等腰三角形時t的值為,6,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)D在直線AB上.
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線;
(2)如圖(2),CD與⊙O交于另一點(diǎn)E.BD:DE:EC=2:3:5,求圓心O到直線CD的距離;
(3)若圖(2)中的點(diǎn)D是直線AB上的動點(diǎn),點(diǎn)D在運(yùn)動過程中,會出現(xiàn)C,D,E在三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)連線的中點(diǎn)的情形,問這樣的情況出現(xiàn)幾次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是對角線AC上一點(diǎn),且CE=CD,過點(diǎn)E作EF⊥AC交AD于點(diǎn)F,連接BE.
(1)求證:DF=AE;
(2)當(dāng)AB=2時,求BE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算: ﹣( )﹣1+(π﹣ )0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( ﹣ )÷ 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l3分別通過A、B、C三點(diǎn),且l1∥l2∥l3.若l1與l2的距離為4,l2與l3的距離為6,則Rt△ABC的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由甲、乙兩個工程隊(duì)承包某校園綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程所需時間比是2:3,兩隊(duì)合做6天可以完成.
(1)求兩隊(duì)單獨(dú)完成此工程各需多少天?
(2)甲乙兩隊(duì)合做6天完成任務(wù)后,學(xué)校付給他們30000元報(bào)酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊(duì)各得到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AB=AC=4,AD⊥BC,BD=2,延長AD到E,使AE=2AD,連接BE.
(1)求證:△ABE為等邊三角形;
(2)將一塊含60°角的直角三角板PMN如圖放置,其中點(diǎn)P與點(diǎn)E重合,且∠NEM=60°,邊NE與AB交于點(diǎn)G,邊ME與AC交于點(diǎn)F.求證:BG=AF;
(3)在(2)的條件下,求四邊形AGEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com